

PROFESSIONAL VERIFICATION
A Guide to Advanced Functional Verification

This page intentionally left blank

PROFESSIONAL VERIFICATION
A Guide to Advanced Functional Verification

PAUL WILCOX
Cadence Design Systems, Inc.

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

http://www.wkap.nl

eBook ISBN: 1-4020-7876-5
Print ISBN: 1-4020-7875-7

©2004 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2004 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Boston

http://kluweronline.com
http://ebooks.kluweronline.com

This book is dedicated to my wife, Elsa, for her unwavering love and sup-
port, and to my children, Jonathan and Elizabeth, for the inspiration and

joy they have brought to my life.

This page intentionally left blank

Contents

Authors xiii

Acknowledgements xv

Section 1 The Profession of Verification

1. INTRODUCTION

LEARNING FROM OTHER’S BEST PRACTICES

IS THIS BOOK FOR YOU?

3

4

4

2. VERIFICATION CHALLENGES

MISSED BUGS—ARE WE JUST UNLUCKY?

THE NEED FOR SPEED

DOING MORE WITH LESS

FRAGMENTED DEVELOPMENT, FRAGMENTED VERIFICA-
TION

7

7

9

10

12

15

15

3. ADVANCED FUNTIONAL VERIFICATION

VERIFICATION AS A SEPARATE TASK

COORDINATING VERIFICATION WITH OTHER DEVELOPMENT
TASKS

VERIFICATION AS A MULTITHREADED PROCESS

VERIFICATION IS NOT 100 PERCENT

VERIFICATION IS METHODOLOGY-BASED NOT TOOL-
BASED

VERIFICATION DIFFERS FOR EACH DESIGN

17

18

20

21

22

viii Professional Verification

4. SUCCESSFUL VERIFICATION

TIME MANAGEMENT
Start Early
Remove Dependencies
Focus on Total Verification Time

RESOURCE USAGE
Plan and Document
Build a Team
Use Someone Skilled in Management

VERIFICATION PROCESSES
Choose the Right Tool for the Job
Choose the Right Information for the Job
Automate

APPROACHES
Keep Verification Real
Stress the Design

5. PROFESSIONAL VERIFICATION

UNDERSTANDING PROFESSIONAL VERIFICATION

THE VALUE OF VERIFICATION

THE COST OF ADVANCED VERIFICATION

VERIFICATION: SECOND-CLASS CITIZEN
The Perception of Verification
Verification Training

CHANGING CURRENT PERCEPTIONS
Develop the Profession of Verification
Set Standards for Excellence
Train and Develop Leaders
Share Best Practices

Section 2 The Unified Verification Methodology

6. THE UNIFIED VERIFICATION METHODOLOGY

WHAT MAKES A METHODOLOGY UNIFIED?

IMPROVING SPEED AND EFFICIENCY

KEY CONCEPTS
Functional Virtual Prototype
Transaction-Level Verification

23

23
23
24
24

25
25
26
26

27
27
28
28

29
29
30

31

31

32

33

34
35
35

36
36
36
37
37

41

42

42

43
43
46

Contents ix

Unified Test Environment
Assertions
Coverage
Hardware Acceleration

METHODOLOGY OVERVIEW
Advantages of the UVM

7. UVM SYSTEM-LEVEL DESIGN

FROM WHITE BOARD TO FVP
An FVP versus a System Model
Costs and Benefits of an FVP

USING AN FVP
Software Development
Subsystem Development
Design Chain Use

CREATING AN FVP
Creating a Transaction-Level Model for an FVP

Creating a TLM from a Behavioral Model
Creating an Analog FVP TLM
Creating an Algorithmic Digital TLM

Creating Stimulus and Response Generators
Creating Interface Monitors
Creating Architectural Checkers

VERIFYING THE FVP
Stimulus Generation
Architectural Checks
Advanced Verification Techniques

8. CONTROL DIGITAL SUBSYSTEMS

STEP 1: VERIFICATION PLANNING
Goals and Objectives
Strategy
Tactics
Measurement and Analysis

STEP 2: ENSURING QUALITY INPUT
Instrumenting with Assertions
Linting
Static Verification of Known Issues
Static Verification of Assertions

47
48
49
50

51
53

57

57
58
59

61
62
63
63

64
64
64
65
66
66
66
67

67
67
68
69

71

72
73
74
74
75

76
77
78
78
79

x Professional Verification

STEP 3: EXECUTION
Testbench Development
Advanced Verification Techniques

Assertions in Simulation
Coverage
Acceleration on Demand

Top-Down FVP-Based Flow
Bottom-Up Specification-Based Flow

STEP 4: HARDENING THE BLOCKS

9. ALGORITHMIC DIGITAL SUBSYSTEMS

STEP 1: VERIFYING THE ALGORITHM
Algorithm Development in an FVP
Algorithmic Models

STEP 2:TESTBENCH DEVELOPMENT

STEP 3: VERIFYING THE FINAL IMPLEMENTATION
Advanced Verification Techniques

STEP 4: INTEGRATION AND DESIGN HARDENING

10. ANALOG/RF SUBSYSTEMS

CADENCE ACD METHODOLOGY

THE MEET-IN-THE-MIDDLE APPROACH

THE ACD FLOW
System Requirements
Process Feasibility
IC Requirements Translation
Simulation Strategy
Behavioral-Level Top-Level Simulations
Block-Level Design
Model Calibration
Physical Design Strategy
Floorplan and Preliminary Top-Level Route
Updated Routes
RC Extraction
Silicon Analysis
Chip Finishing

11. INTEGRATION AND SYSTEM VERIFICATION

SYSTEM INTEGRATION

79
80
81
81
81
82
83
84

86

87

88
88
89

90

91
92

93

95

95

97

100
101
101
101
102
104
105
105
105
105
105
106
106
106

107

107

Contents xi

Integrating a Subsystem into the FVP
Simulation Acceleration
Order of Integration

SYSTEM VERIFICATION
Software-based Simulation
Hardware Prototypes
Emulation

Section 3 Tools of the Trade

12. SYSTEM-LEVEL DESIGN

ISSUES ADDRESSED WITH AN FVP

VERIFICATION AND SOFTWARE DEVELOPMENT
Using the System Software Environment for Verification

Microcode Engines
Hardware Platforms
Software Algorithms

ABSTRACTION
Design Abstraction
Verification Abstraction
Transaction-Level Modeling

13. FORMAL VERIFICATION TOOLS

WHEN TO USE FORMAL VERIFICATION

FORMAL VERIFICATION TECHNIQUES
RTL Analysis (Linting)
Equivalency Checking
Model Checkers
Semi-Formal Verification

14. TESTBENCH DEVELOPMENT

TRADE-OFFS
Reuse—Isolating Design-Specific Information
Efficiency—Abstracting Design Information
Flexibility—Using Standard Interfaces
Balancing Practical Concerns
Top-Down vs. Bottom-Up Testbench Development

UNIFIED TESTBENCHES
Testbench Components

108
109
111

111
112
113
113

119

119

121
122
122
123
124

125
125
127
129

131

131

132
132
135
137
138

141

141
141
142
143
144
145

146
147

xii Professional Verification

Stimulus Generators
Transactors
Interface Monitors
Response Checkers
Testbench API

Top-Down Testbench Development
Bottom-Up Testbench Development

VERIFICATION TESTS
Directed and Random Tests

Types of Directed Tests
Combining Random and Directed Approaches

Constraining Random Tests
Testbench Requirements

15. ADVANCED TESTBENCHES

ASSERTIONS
Using Assertions in the Test Process
Using Assertions

Assertions and the FVP
Assertions at the Block Level
Assertions and Chip-Level Verification
Assertions and System Verification
Flexibility and Reuse

COVERAGE
Using Coverage

Filling Coverage Holes

REACTIVE TESTBENCHES

16. HARDWARE-BASED VERIFICATION

ACCELERATED CO-VERIFICATION
Using an ISS, Software Simulator, and Accelerator/Emulator
Using an RTL Processor Model and Emulator
Using a Physical Model of the Processor and an Emulator
Comparing Approaches

INCORPORATING CO-VERIFICATION INTO YOUR DESIGN
ENVIRONMENT

Resources

Glossary

Index

147
147
148
148
149
149
151

152
153
153
154
155
156

159

159
160
162
164
164
165
165
166

166
167
170

171

175

175
177
178
179
180

181
183

185

189

Authors

Paul Wilcox is the Director of Methodology Engineering at Cadence
Design Systems, where he has worked since 2002. Previously, he worked at
Cisco Systems, StratumOne Communications, 0-In Design Automation, and
Sun Microsystems. He holds patents for work in advanced ASIC design and
verification. Paul holds a Bachelor of Science degree in electrical engineering
from Northeastern University and an MBA from San Jose State University.

Kurt Johnson is group director of Custom IC Marketing for Cadence
Design Systems. At Cadence, Johnson has served with AMS Design Environ-
ment Services, where he established the AMS design environment from the
ground up. He was also principal technical architect and strategist for full cus-
tom methodology services at Cadence IC Methodology Services. He has
worked for Qualcomm, Western Digital, Teledyne Systems, and Motorola.
Johnson earned his BSEE from Purdue University.

Ray Turner is the senior product line manager for Cadence’s Incisive Pal-
ladium accelerator and in-circuit emulation systems, part of the Incisive
Verification Platform. Before joining Cadence, he was the EDA marketing
manager for P CAD products for seven years. Overall, Ray has 18 years expe-
rience in product management for EDA products. He also has 14 years
experience in hardware, software, and IC design in the telecommunications,
aerospace, ATE, and microprocessor industries. Ray received his Bachelor of
Science degree in electrical engineering from Loyola University of Los Ange-
les. He holds patents for early work in digital signal processing and has
authored two books on engineering.

This page intentionally left blank

Acknowledgements

Sir Isaac Newton once remarked, “If I have seen further [than certain other
men], it is by standing upon the shoulders of giants.” This book is based on
the experiences and hard work of many giants in the design and verification of
modern ICs. It would be impossible to list all the individuals who have con-
tributed to the collected knowledge contained in this book, but it would be
foolish to not acknowledge their contribution.

I have encountered many “giants” in my career who have taken the time
and had the patience to teach me much of what is contained in this text. For
that I would like to acknowledge the friends and co-workers I have worked
with at Sun Microsystems, 0-In Design Automation, StratumOne Communi-
cations and Cisco Systems. Special thanks to Willis Hendly, David Kaffine,
James Antonellis, Curtis Widdoes, and Richard Ho.

This book is the product of the efforts of many people at Cadence Design
Systems, and I would like to acknowledge the following for their contribu-
tions and efforts in reviewing the text: Andreas Meyer, Grant Martin, Leonard
Drucker, Neyaz Khan, Phu Huynh, Lisa Piper, and the entire Methodology
Engineering team.

I want to acknowledge Linda Fogel for her tireless and professional edit-
ing, along with Kristen Willett, Kristin Lietzke, and Gloria Kreitman in
Cadence’s marketing communications group.

A special acknowledgement to Paul Estrada for providing me the opportu-
nity and time to write this book and for showing faith in me when even I was
ready to give up. One could not ask for a better mentor or friend.

Finally, I would like to acknowledge the true giants of my life, my parents,
Eleanor and Gary Wilcox, for their love and support, and for teaching me the
nobility of education.

This page intentionally left blank

SECTION 1
THE PROFESSION OF VERIFICATION

This page intentionally left blank

Chapter 1

Introduction
Thinking about how it might not work

After years of doing what I considered grunt work in test, tool develop-
ment, and verification, I finally got my chance to design a major portion of an
important chip. I had created a detailed specification and beat all the sched-
uled milestones. My design was meeting its performance goals with time to
spare, and the initial layout looked great. And then, two weeks before tapeout
of the entire chip, the bug reports began to come in. The random verification
regressions had been running fine for weeks until some of the parameters
were loosened. Suddenly, my block was losing or misordering transactions,
and all the simulations were failing. I found what I thought was a one-in-a-
million corner case bug, but the next day the simulations were failing again.
Another fix and another fix and still the bugs kept popping up. I was called in
by the project managers. The tapeout deadline was at risk of slipping and it
was because of me.

As I drove home that night, I tried to figure out what was going wrong. I
had followed all the design rules, creating a very complex design in smaller
size and greater performance than had been required. The data structure I had
come up with could support many advanced features, and we were even pat-
enting it. As I thought about it, I saw that the complexity I had added also
created many new possible side effects, and the simple testbench I had written
could not test these side effects. I realized that the only way I could get this
design back on track was to stop thinking about how it should work and start
thinking about how it might not work. It was at this moment that I began to
understand functional verification.

But I’m not alone in going through this. Most engineers throughout the
integrated circuit (IC) industry have had similar experiences. Fortunately,
functional verification is evolving from an afterthought to an integral part of
the development process. The evolution has occurred not because of fore-
thought and careful planning, but out of necessity. Functional verification
teams must keep up with growing complexities, growing device sizes, rapidly
changing standards, increased performance demands, and the rapid integra-
tion of separate functions into single systems. Functional verification of
today’s nanometer-scale, complex ICs requires professional verification.

This book explores professional verification in a practical manner by
detailing the best practices used by advanced functional verification teams
throughout the industry. The goal of this book is not to present research into

4 Professional Verification

new areas of verification or to provide a how-to manual for a specific tool or
language. Instead, this book describes the advanced verification process based
on what real teams are doing today so that you can incorporate this informa-
tion into your own work.

LEARNING FROM OTHER’S BEST PRACTICES

Anyone who is even indirectly associated with the development of
advanced ICs today is well aware of the numerous issues surrounding func-
tional verification. Larger designs with increasing complexity and shorter
development cycles have made yesterday’s basic verification techniques
unusable. While verification teams struggle with doing more verification to
ensure higher quality and first past success, they are faced with fewer
resources and outdated tools. Functional verification is a moving target for
many teams who feel they are going to battle unprepared and understaffed.

Where can verification teams go to address the issues they face day in and
day out? Most new research in verification focuses on mathematical tech-
niques or system-level approaches that require major changes in verification
as well as design and infrastructure. Engineering schools generally do not
include functional verification in their curriculums. The only place to turn to
for guidance is to other verification teams. By studying the best practices of
advanced verification teams and learning from their successes and failures,
engineers can gain valuable insights for addressing their own verification
needs.

There is no perfect verification team in the industry today, and no two
teams face the same set of issues. Therefore, it is important to examine the
best practices of a wide variety of teams to glean the issues most important to
you. Cadence Design Systems works with and studies the practices of the
most advanced verification teams. This book is based on these collected expe-
riences. It provides a wide array of knowledge and practices that you can use
to address your specific concerns.

IS THIS BOOK FOR YOU?

If you are a researcher or an engineering student, this book offers a useful
presentation of the advanced techniques used by today’s successful verifica-
tion teams. However, the book assumes some basic knowledge in the known
issues and processes used in industry today. A list of excellent resources on

Chapter 1: Introduction 5

the fundamentals and techniques of functional verification is provided in
Appendix A, “Resources.”

If you are a project manager who oversees IC development, you will find
the information on methodology and process improvements valuable. If you
are an architect, system designer, system integrator, software developer, or
tool developer, you might not consider verification a primary concern. But
gaining a good understanding of the overall verification process and how that
process can be integrated into your own area of expertise could be beneficial.
Often design engineers verify their own block or another designer’s block.
Many of today’s register-transfer level (RTL) designers understand the
importance of functional verification and the role it plays in the development
process. This book provides information on advanced verification that you
can use in your job as you move through your career.

But the main audience for this book is the verification engineer. You are
the professionals who face the day-to-day responsibilities and challenges of
verifying the largest and most advanced ICs today. This book is an invaluable
resource for understanding the complete verification process and how
advanced teams throughout the industry successfully attain their goals.

This book focuses on the practical application of advanced verification
techniques using today’s best practices. The first section presents some of the
fundamental topics in verification today and discusses the profession of veri-
fication. The second section shows how verification issues can be addressed,
and shows how all of the practices fit together to form a complete unified
methodology. The final section provides an in-depth look at many of the top-
ics discussed in the second section.

This page intentionally left blank

Chapter 2

Verification Challenges
Missed bugs, lack of time,and limited resources

Every development team faces verification issues of some kind. Some
might be due to the size or number of designs, some to the complexity of the
design, some to the verification process being used. Verification teams con-
tinually attempt to address these issues only to find that new problems arise
that are more complex than the original ones. Almost every issue in verifica-
tion today can be placed in one of three buckets: missed bugs, lack of time, or
lack of resources. The most pressing issue is the inability to find all the bugs
during the verification process. Given enough time and resources, teams can
verify with a high degree of confidence that a design will work. But having
enough time to complete verification is a challenge. So more resources, more
compute power, and more processes are thrown at the problem in hopes of
decreasing the time to complete successful verification. Yet resources are
expensive, which leads to the perception that verification takes too many
resources to be successful on time. Teams need to find all the bugs in the
shortest amount of time, with the fewest number of resources, in the most effi-
cient and effective manner. Let’s take a closer look at each of these areas.

MISSED BUGS—ARE WE JUST UNLUCKY?

The highest priority for verification teams has always been to find bugs.
All the effort placed in architecture, design, implementation, and verification
can be wasted with one missed functional bug. The farther down the supply
chain a bug is found, the more costly it is to everyone involved. You can
determine a company’s belief in their design and verification processes by
examining the number of planned spins they account for in their schedules
and budgets. Some teams automatically plan and budget with the assumption
that a certain number of functional bugs will not be found in verification.
Other teams plan for first-pass success, and respins are only part of the contin-
gency plan and budget.

It does not matter how fast or advanced your process is if bugs slip
through into silicon, causing the project to be delayed or cancelled. A recent
study by Collette International Research of IC/ASIC designs and functional
verification issues related to chip design found that the most common sources
of functional bugs found in silicon are design errors, incorrect or incomplete

8 Professional Verification

specifications, and changing specifications.1 Each of these problems can be
addressed with better use of tools and verification processes. Designer errors
can range from simple typographical errors to incorrect implementations of
complex functions or features. Using tools targeted at improving code quality
and testbenches that thoroughly stimulate and check the design can increase
the chance of finding these bugs. Incomplete or incorrect specifications are
due to a lack of process and discipline in the development process. Verifica-
tion can address this problem by requiring an executable specification and
implementing detailed review processes. Miscommunication errors most
often occur when parts of a design developed by different engineers or teams
are integrated together. Verification can remedy this with thorough integra-
tion and system testing.

Every project seems to encounter one or two “one in a million” bugs. No
matter how thorough the verification process is, it is impossible to know
about and verify every possible scenario. Inevitably, a bug is found in the lab
that seems so obscure, requiring an unthinkable number of events to occur in
just such a sequence. Engineers console themselves by thinking that there is
no way they could have thought of that bug ever occurring. But when two or

1.Collett International Research, Inc., 2002 IC/ASIC Functional Verifica-
tion Study, North America.

Chapter 2: Verification Challenges 9

three of these “one in a million” bugs are found in every project, a solution
needs to be found.

The difficulty in finding obscure bugs in large designs is that there are
more possible scenarios than there is time to test. Verification teams attempt
to address these bugs using advanced automated techniques, such as formal
verification or constrained random testbenches. Automating the processes
increases the likelihood that the correct sequence of events to stimulate and
catch the bug occur. But like any bug, finding obscure bugs is best handled by
using new or better tools and processes.

THE NEED FOR SPEED

Time-to-market pressures have forced the entire IC development process
to be completed in less time, while the size and complexity of designs con-
tinue to increase. Many verification teams are challenged by completing the
verification process on time.

Probably the most asked question by development teams is “when are we
done?” Verifying large complex designs is an exercise in risk management. If
you stop and tape out too soon, you risk finding a bug in silicon. If you wait
and tape out too late, you may have wasted an opportunity to get to market
sooner. There is no easy answer to determining when you have done enough
verification, and often the answer is different for each design. Teams have
attempted to use metrics, such as bug rate or coverage, but they do not always
provide accurate enough information. Teams often determine when they are
done based on a mix of experience, metrics, and gut feel.

Teams may not be able to determine when they are done, but they usually
know when they are not. Every team has a feel for what testing must be done
before a design is ready to tape out. It is not until they reach the point that they
have tested everything that they can think of that determining completeness
becomes an issue. Often teams never reach this point due to schedule con-
straints—no need to address determining when you are done if you know
there is testing still to complete. This issue often boils down to a need for ver-
ification speed. If teams are able to verify what they know needs to be tested
as fast as possible, they will then have time to analyze metrics and make a
thorough conclusion on completeness before the clock runs out.

Finding easy or obvious bugs late in the verification process is very frus-
trating. Having a functionally correct design is a prerequisite for many
development processes, such as synthesis, software development, and system
verification. Finding a bug late often means resetting these processes, as
shown Figure 2. Obviously, the earlier bugs are found the better, but finding

10 Professional Verification

bugs sooner is only a benefit if it decreases the total verification time. Some
techniques take so long to debug or to reverify that the total verification time
is the same or worse.

Finding 98 percent of the bugs in a design is just a matter of using a
methodical process. Finding the last 2 percent, however, often takes the most
time and effort. Finding tough bugs is considered partly an art, partly luck,
and a lot of hard work. Having engineers experienced in debugging is always
helpful, but it still takes a lot of hard work. Tough bugs are hard to find
because of misconceptions, because they involve a large amount of the
design, and because they require many simulation cycles to find and recreate.
Designers or debuggers often have misconceptions about the operation of the
design, so they might not be focusing on the real cause. When debugging
complex designs, the bug seems to move throughout the design—it starts in
one block, is traced to another and another, until it is found in a place nobody
would have thought to look. Once an incorrect operation is identified, it might
take many more cycles to recreate the bug using the correct debug tools.

DOING MORE WITH LESS

Given enough time and resources most advanced verification teams can
reach their goals. But time and resources are valuable commodities. Verifica-
tion teams need to reach their goals in less time with the least amount of
resources possible.

The verification process requires many resources, including engineers.
Finding experienced verification engineers is difficult. Currently, schools do

Chapter 2: Verification Challenges 11

not offer formal training in verification, so teams are left with trying to hire
experienced engineers or training inexperienced engineers. This often leads to
specialized verification engineers who know how to perform some verifica-
tion tasks, but not all. Specialized resources can only be utilized on specific
tasks, so unless the process is managed very carefully, resources are not uti-
lized to their fullest extent. The net effect is inefficiencies in the verification
process, limiting the amount of work that can be done.

Verification resources also include compute power and verification tools.
In the past, many teams have attempted to throw compute power at verifica-
tion to get it done faster. Today, computer and networking hardware is
relatively cheap, but outfitting a large server farm with the necessary software
licenses and verification tools can be costly. Quite often verification tools
focus on one specialized task in the process and can only be used for a small
percentage of the overall project time. Outfitting a server farm with software
to meet the demands for this limited amount of time can be very costly.

A mantra of many good code developers is “write once and use often.”
Unfortunately, the mantra in verification seems to be “write often and use
once.” Time is often wasted capturing and replicating the same information
multiple times for different processes and tools. Different environments
require the same information but in different representations. The goal of ver-
ification teams should be to reuse the information from task to task and from
project to project. Verification reuse can provide a huge productivity gain if
done correctly. Making models and components reusable requires more time
and effort, but if this is amortized across multiple projects, it is often worth
the effort and costs. Verification teams need to identify when reuse is applica-
ble and have the processes and methodology in place for utilizing components
or models multiple times. If teams do not plan for reuse, the work can be
wasted.

Reusing design blocks is prevalent today in large complex designs. It is
often easier to reuse or modify a block from a previous design than to design a
block from scratch. Unfortunately, the verification for that block may have
been done by a different team using different methods and environments than
your team plans to use. Do you trust that the design was verified correctly the
first time? Does the design need to work differently in your system? These
questions often lead development teams to reverify existing blocks to reduce
the risk of failure.

Development teams want to be able to reuse old design blocks without
having to reverify the old design. This requires design teams to design blocks
that work for the intended design as well as newer designs. Verification teams
need to develop environments that can quickly reverify existing designs when
they change and that can also expand to verify designs within different system

12 Professional Verification

environments. The gain in efficiency design teams realize from reusing
design IP needs to be met with an equal focus on efficiency in the verification
process.

FRAGMENTED DEVELOPMENT, FRAGMENTED
VERIFICATION

Whether the verification issue is related to missed bugs, speed, or effi-
ciency, addressing the problem involves careful analysis and proper execution
of the solution. Problems involving missed bugs are usually related to not
using the correct tool or technique or using them incorrectly. These types of
problems are often resolved by understanding the root cause of the problem
and then selecting the correct technique to address it. The third section of this
book discusses different verification techniques and how they can be used to
address these types of issues.

Addressing issues of speed and efficiency, however, is not as straightfor-
ward as addressing missed bugs. Fragmentation in the verification process is
the major cause of lost speed and efficiency. Today’s verification process is
fragmented into many isolated stages that do not share information or com-
mon techniques. This fragmentation results in duplicated processes,
incompatible techniques, and lost time.

If we look at a typical verification flow, the fragmentation is obvious.
Each task has its own stage with its own tools, environment, user interface,

Chapter 2: Verification Challenges 13

and models. Reuse from task to task, often known as vertical reuse, is limited
or impossible. The same information is recreated at each stage, only to be left
unmaintained once the task is completed. This “information rot” makes it
nearly impossible to quickly make late changes in the design and rerun the
task.

Fragmentation also exists from project to project. Few companies have a
common verification flow for all projects. Even derivative projects often
require new verification flows to be developed. Because each project is differ-
ent, reusing models or information is impossible. Even though design IP can
be reused from project to project, verification IP used to reverify the design
often cannot be reused. Fragmentation also exists between design chain part-
ners. Designs today are linked in a chain with IP developers providing blocks
to IC developers, who provide devices to system developers. Fragmentation
between design chain partners results in recreating verification environments
at each stage in the design chain.

The verification process has also become fragmented due to the ad hoc
approach most teams use to develop their process. Instead of addressing the
verification process as a whole, teams address individual issues on an as-
needed basis. Teams add new techniques or tools without regard for the over-
all process, resulting in a flow that resembles islands of automation. With the
advent of hardware description languages (HDL) and common implementa-
tion flows, the productivity of design teams has surpassed the ability for
verification teams to keep up. Verification teams, who are under great time
and resource pressure, end up just fighting fires and not addressing long-term
issues, which results in fragmented approaches to verification.

No single tool or method can address the fragmentation in your develop-
ment process. In fact, they might make it worse. What is needed is a
methodology to unify all the stages, from system design to system design-in,

14 Professional Verification

across different design domains and projects. Only by unifying the entire ver-
ification process will fragmentation be removed, making dramatic gains in
speed and efficiency possible.

The second section of this book looks at a unified verification methodol-
ogy that is based on best practices used by advanced verification teams today.
It gives you a view into how the different tools and techniques can be used
together to address today’s major verification challenges. But first, let’s look
at the role advanced functional verification plays in developing a unified veri-
fication methodology.

Chapter 3

Advanced Funtional Verification
Viewing verification differently

Advanced functional verification is not simply doing more of what you are
already doing or using more powerful tools to make your job easier.
Advanced functional verification is a fundamentally different way of thinking
about and performing verification of large complex designs. Let’s look at
some of the basic principles of advanced functional verification and the impli-
cations these principles have in verification today.

VERIFICATION AS A SEPARATE TASK

For many years, verification was considered part of the design process.
The verification strategy was developed by the design team, and verification
was performed after the code was completed, usually by the designer who
wrote it. This approach worked for small designs, where verification made up
only a small percentage of the total project time. As the size of designs grew
and the complexity increased, verification became a much larger portion of
the total development effort. Advanced development teams realized that they
had to treat verification as an independent development task.

Separating the verification of a design from the development of the design
helps improve the efficiency of the process and the quality of the results.
Today’s large designs often require multiple complex testbenches and several
layers of integration. Waiting until the design is complete to begin the verifi-
cation process increases the total development time. By making the
verification process independent, verification can begin in parallel with the
design process. Instead of waiting for testbenches to be created and tests to be
written after the design is completed, a parallel verification process enables
the development team to begin testing the design immediately after it has
been developed.

Project managers have often described the design and verification of hard-
ware or software as a “V” process, as shown in Figure 5. In a V process, the
project moves from design at a higher system level to design at lower chip to
the block levels. The design is then integrated, then verified and tested from
the low block levels back up to the chip and system levels.

16 Professional Verification

Advanced verification teams follow a modified V process. In the basic V
process, the verification tasks include developing testbenches, writing tests,
and running and debugging the tests. All of these tasks wait until integration
is completed and follow in a linear fashion. Advanced verification teams
accomplish the development of testbenches and tests in parallel with the
design so that all that is left to do after integration is run the tests and debug.
This modified V process is shown Figure 6.

In addition to decreasing the total project time, a separate verification pro-
cess improves the quality of the results. Verifying a design often requires a
different mindset than implementation. When you implement a design, you
concentrate on how the design should work. When you verify the design, you
also concentrate on how the design might not work. It is common practice in
many software development processes that the designer should never be
responsible for testing one’s own code, because if the designer made an incor-
rect assumption or interpreted a specification incorrectly when implementing
the design, the same assumption or incorrect interpretation will be made in
testing the design. Having an independent person verify the design decreases
the likelihood that the same incorrect assumptions or interpretations are made

Chapter 3: Advanced Functional Verification 17

in the verification. Engineers working solely on design verification provide an
independent and focused approach that will find more bugs and find them
faster.

Separating design and verification affects the organization and makeup of
the development team. A complex project might require a large team of dedi-
cated verification engineers who need a separate manager or lead to
coordinate them and track their progress. Some teams might separate engi-
neers into different groups focused on either design or verification. Other
teams might have a single group of engineers and designate some as focused
on design and some as focused on verification. Either way, the responsibilities
for design and verification are separated, and the overall effect to the organi-
zation is the segmentation of verification engineers and the need for separate
coordination of the verification process. Separating design and verification
has affected the engineering community by providing a new area of special-
ization and a career path in functional verification.

COORDINATING VERIFICATION WITH OTHER
DEVELOPMENT TASKS

For many teams, functional verification is considered independent of other
development tasks, such as architecture, software development, or system
design-in. In actuality, there is great overlap between each of these areas and
functional verification. Architects do not simply create new systems by pull-
ing ideas from thin air. They often need to prove that their ideas are feasible
or choose between different ideas. The process of testing feasibility and com-
paring system responses is very similar to a functional verification process. In
many systems today, a large amount of the functionality of the product is
encompassed in the software that runs the design. Verifying that the software
works with the hardware is an important part of the verification of these sys-
tems. System design-in is the process of taking a device and implementing it
in a final product. System design-in teams need to verify that not only is the
device functioning correctly but that it will also function correctly in the final
product.

Development teams that do not understand and manage the coordination
of functional verification with other development groups waste time and
resources. A common thread among functional verification, architecture
development, software development, and system design-in is the need for a
representation of the design: architects to test new ideas or algorithms; soft-
ware developers to test that the software works correctly; system design-in
teams to verify that the system works together; and verification teams to ver-

18 Professional Verification

ify the implementation. When each of these groups works independently, the
work required to create and maintain these representations is duplicated. If
teams coordinate or reuse the functional representations, they can greatly
reduce development time and resources.

In the past, teams could wait for a complete architectural analysis to be
completed before beginning implementation, and software development
could wait until the hardware had been designed. But if teams want to meet
today’s reduced development schedules, they must perform these develop-
ment processes in parallel. This means that design and functional verification
begins before the architectural analysis is completed. Software development
is done in parallel with hardware development, and the final system design-in
begins before all the parts are fully tested and working in the lab. Starting
these development processes earlier in the project creates new demands for
functional verification teams. The verification team begins with less well-
defined architectural specifications and needs to combine performance testing
with functional testing. The other development teams need a verified repre-
sentation of the design earlier in the project, so the verification team must
prioritize their efforts and synchronize with other development teams.

Closer coordination between the verification team and the other develop-
ment teams affects the communication and scheduling of the verification
process. Functional verification is often not considered until after the project
has begun and progressed for a period of time. The thinking of many design
teams was that the verification team should not engage on a project until the
architecture and specification were complete and the design was well under-
way. If the verification team is to coordinate with the other development
teams, it needs to engage in the project sooner. Verification needs to under-
stand the development of the architecture if it is to help with performance
analysis and if specifications are limited. Verification managers or leads also
need to understand the requirements for deliverables between each group and
to schedule resources accordingly. Organizationally, the verification team
plays more of a central role in the development process.

VERIFICATION AS A MULTITHREADED PROCESS

Verifying simple small designs is a serial process. The verification effort
is usually accomplished with basic simulation done on the entire device all at
once or in a few small parts. There are few milestones to track or parallel pro-
cesses to coordinate. But as designs grow larger, teams need to break the
designs into hierarchical pieces to be tested independently before being inte-
grated. As designs become more complex, different methods and techniques

Chapter 3: Advanced Functional Verification 19

need to be used to verify the design in different ways. Verifying a large com-
plex design includes several parallel processes, multiple stages, and many
dependencies to manage.

If a complex verification project is not well managed, time is wasted and
the quality of the results might be poor. A large verification project may con-
sist of many environments to test the individual blocks, integrated
subsystems, and final system. Each of these might have multiple dependen-
cies, such as delivery of RTL, creation of testbench components, and creation
of tests. If these dependencies are not managed well, engineers are stalled and
unable to complete their tasks. The verification of a complex design can
include multiple methods. The team might use simulation, static verification,
emulation, and software coverification to verify different aspects of the same
design. Managing the requirements of these methods so that each can be per-
formed successfully improves the overall quality of the design.

A complex multithreaded verification process needs project management.
A verification strategy must be developed early in the project to coordinate
the multiple processes. A verification manager needs to be able to track the
internal dependencies of the process as well as the status of the design and
other development groups. Managing multiple dependencies requires a flexi-
ble verification team that is able to adapt to the inevitable events that shift
priorities, resources, or schedules. The verification manager or lead needs to

20 Professional Verification

have project management skills and understand the entire development pro-
cess to be successful.

VERIFICATION IS NOT 100 PERCENT

Verification of small designs relies on the ability to completely verify the
design. In the most basic verification approach, the design is stimulated with
every possible combination of stimulus and the responses are verified to be
correct. As the design size and complexity grow, it quickly becomes impossi-
ble to test every possible stimulus combination. One approach is to limit the
testing by running suites of stimulus that stimulate the exact scenarios the
design is intended to operate under. This can only be done for designs that
operate in a confined deterministic manner.

If the size and complexity reach a point where it is impossible to verify
every possible scenario, the verification team needs to develop a new strategy
to be able to meet the schedule and avoid bugs slipping through the process
into silicon. Some verification teams prioritize the possible scenarios and
make sure that the most important scenarios are tested first. This approach
reduces the chances of a bug being found in an important area of the design.
Some verification teams use automation and random testing to verify as much
of the design as possible in the allotted time. This provides the widest possible
coverage that a bug does not exist. Most verification teams use a combined
approach of running the most important scenarios first and then using random
testing to cover the widest areas later in the process. Whichever method is
chosen, the most important thing is to choose a strategy that addresses the
project’s needs.

Being unable to verify the design completely affects the entire develop-
ment process. Developing a new design is an exercise in risk management.
The verification team cannot provide 100 percent confidence that the design
is functionally correct. There is always some risk of a bug slipping through
the process and being found in the lab or at the customer. The more effort and
time applied to verifying a new design, the less risk of a missed bug. The
management team needs to decide when enough verification has been done so
that the risk of a missed bug affecting the design is acceptable. There are
many factors that go into this decision, including time-to-market pressure,
development costs, and quality concerns. The verification team can assist this
process by tracking progress closely and providing metrics to help measure
the risk.

Chapter 3: Advanced Functional Verification 21

VERIFICATION IS METHODOLOGY-BASED NOT
TOOL-BASED

Today, standard verification is mostly done with simulation. As the design
size and complexity grow along with the time-to-market pressures, develop-
ment teams attempt to address perceived weaknesses in their verification with
different approaches, such as assertion-based, transaction-based, or coverage-
based verification. Each of these methods focuses on one or two individual
verification issues, such as debug time or identifying coverage holes. Unfortu-
nately, verification teams often find that when they base their verification on
one method, it addresses the one issue but exacerbates others. Teams begin to
add one tool or method after the other hoping to address their verification
problems, but quickly find that due to incompatible tools and approaches they
are spending more time addressing tool issues and less time verifying the
design.

Verification tools associated with methods, such as simulation, assertions,
coverage, or emulation, should not be the center of functional verification.
These tools should be viewed as a collection of utilities to help reach your
functional verification goals. A carpenter keeps a tool box full of different
tools, but does not let the tools dictate how something is built or fixed.
Instead, the carpenter figures out how to build or fix something and then
chooses the right tools in the right sequence for accomplishing the task. In a
similar manner, an advanced verification team needs to first understand what
it is they are trying to accomplish, then develop a methodology using the right
tools at the right time. In some projects, certain tools may be heavily utilized
and, in others, they may be lightly utilized or not used at all. Functional verifi-
cation becomes based more on the methodology used to reach the final goal
than on the individual tools that may be used within the methodology.

Methodology-based verification places more emphasis on planning and
strategy and less on techniques. Verification teams are often engaged late in
the process and have no time to plan or develop a methodology. Thus, the
methodology is developed on the fly, addressing whatever the most urgent
issue is at the time. This leads to duplicated processes, wasted time, and poor
results. When a team moves to methodology-based verification, they assess
the needs of a project, plan how they will meet their goals, and develop the
best approach for reaching their goals. Once a methodology is developed, the
tools are brought together in a unified manner to address the project goals.

22 Professional Verification

VERIFICATION DIFFERS FOR EACH DESIGN

The key to becoming a successful development team is not just the ability
to develop one great product, it is the ability to develop multiple products. In
the past, product life cycles were long enough that a development team could
focus on one unique product at a time. In addition, most designs were very
homogeneous—different functions, such as analog, algorithmic, digital, or
radio frequency (RF), were developed independently on different devices.
This meant that development and verification approaches from chip to chip
were very similar. Today’s product life cycles have decreased to the point that
a development team may be finishing one design while they are working on
the derivative design as well as the next generation. Designs are also now
more heterogeneous with system on chips (SoC) containing multiple func-
tions in the same device. The verification approach that worked for one chip
may not work for the next.

Verification teams today need to evaluate each project before executing a
strategy. Teams need to be able to adapt to different design types, different
schedules, and different amounts of available resources. Two designs can be
almost identical, but if the amount of resources or time available to verify is
different, different strategies may be called for. This does not mean that every
project requires a completely different strategy, but advanced verification
teams need to be flexible to adapt to different circumstances while still keep-
ing the same basic focus.

Verifying multiple designs has many implications. First, the verification
team needs to accurately assess the needs of an individual team and plan a
strategy to meet these goals. Teams cannot take a one-size-fits-all approach to
a new project. A verification team also needs to develop a flexible and reus-
able verification methodology and supporting environment. Creating an
environment that is flexible enough to support multiple projects with different
needs takes more effort and time than creating an environment specific to one
design. Management needs to understand the long-term benefits of develop-
ing a flexible environment and not push for short-term gains by cutting
corners. The team needs to develop an environment based on open standards.
Closed proprietary solutions might be the quickest solution for one project,
but they are not expandable or adaptable. Open standards allow the environ-
ment to grow and adapt with changing needs.

There are many more characteristics of advanced functional verification,
and there will always be new ones evolving. This book focuses on the tech-
niques and processes currently used by teams throughout the industry. We
will now look at how some of the successful teams employ the best practices
of advanced functional verification to achieve their goals.

Chapter 4

Successful Verification
Managing time and resources using advanced functional verifica-
tion

By studying a number of successful advanced verification teams, a set of
common guiding principles emerge. These principles guide how teams per-
form the process of verification as well as manage their time and use their
resources. Throughout this book we present best practices used by advanced
verification teams that can all be traced back to these common guiding
principles.

TIME MANAGEMENT

Time management is an important part of any complex process. With
proper time management, verification teams can complete verification sooner
or perform more verification in the allotted time.

Start Early

Every development project is unique and often requires new approaches
for functional verification. Starting the process of verification early in the
project enables the team to plan for new approaches and to adapt to changing
environments. Starting early also allows verification to guide important early
decisions, such as IP selection and feature support. As verification becomes a
larger and larger portion of the development process, more decisions will
need to be made to weigh the trade-offs and effects.

Functional verification requires preparation. If the verification team waits
until the design has been implemented to begin, time is wasted developing
and debugging the verification environment and tests. Verification teams
need to be ready to test the implementation before it is received so that no
time is lost.

Successful verification teams start by demonstrating the value of having
verification knowledge early in the process. These teams become involved in
the development and testing of system models used by architects and system
designers. They also try to decouple the development of verification environ-
ments and tests from the implementation process so that they can be done in
parallel. Of course, it is impossible for teams to engage in new projects early

24 Professional Verification

if they are still supporting older existing processes. Successful verification
teams are careful to stage the roll-off of verification resources from past
projects to synchronize with the early needs of new projects.

Remove Dependencies

The time it takes to complete a complex process like functional verifica-
tion can be reduced by speeding the individual subtasks of the process or by
removing the dependencies associated with the subtasks. Successful verifica-
tion teams understand that time spent waiting for a deliverable from one task
to start another task is wasted time. Removing dependencies not only
decreases the amount of time to complete the overall project, it also uses the
resources more efficiently throughout the project. Waiting for deliverables
like HDL code or specifications leads to large spikes in resource utilization,
followed by lulls as the resources wait for the next key deliverable.

Removing dependencies from external teams that are waiting for deliver-
ables from the verification team reduces project time and improves the
perception of the verification team. Implementation teams must wait for a
bug-free design, and software teams often wait for functional models before
beginning implementation. Staying off the critical path for the project should
be an important goal of any verification team.

Successful verification teams remove dependencies in a number of ways.
Many teams develop their own high-level system model to use in place of the
HDL for developing tests and environments. The same system models can
also be used as an executable specification, alleviating the need to wait for a
functional specification. External dependencies can be met by providing the
high-level model or an early prototype or emulation system to software and
system design teams.

Focus on Total Verification Time

It is important to not lose focus on the big picture when concentrating on
speeding up the individual processes and removing the dependencies in the
verification process. Total verification time is the amount of time it takes
from the start of the project until the design is declared functionally correct.
Successful verification teams are aware of the larger project goals and adapt
their plans and approaches to these goals. This allows these teams to use the
appropriate processes and correct resources throughout the project to attain
the project goals.

During a verification process, a team faces many trade-offs. When weigh-
ing trade-offs, you should always consider the effect on the total verification
time and not simply the short-term milestone. When considering a new

Chapter 4: Successful Verification 25

approach or technique, successful teams measure the run-time improvements,
but also factor in the user time. Executing a test faster is only beneficial if it
does not adversely affect the amount of time you have to spend setting up the
test or interpreting the results.

Successful verification teams focus on finding the easy bugs in a design
early in the fastest, most efficient manner. These teams understand the impor-
tance of finding the critical bugs that may result in redesign. They are aware
that their most valuable commodity is designer time, because designers are
often the only ones with the knowledge to debug a failure and make the
appropriate fix. They want to utilize the designer’s time in the most efficient
manner possible.

RESOURCE USAGE

Managing resources within a verification process is not simply trying to
optimize and do more verification with fewer resources. Resource manage-
ment also includes building teams and environments that facilitate efficient
high-quality verification.

Plan and Document

The planning process may be the most important and the most neglected
part of functional verification. Creating a verification plan provides a process
for developing the strategies and tactics that will be used on a project before it
has begun. This planning provides a map for the team to use as guidance dur-
ing the process and as a means to track progress. Successful teams often have
mechanisms that automatically track test and development status to goals
listed in the verification plan. Without a proper plan, verification teams are
left in a reactionary position, often taking many wrong turns on their way to
reaching the project goals.

Successful teams solidify the plans and processes by documenting them.
Documentation provides a mechanism for communicating the internal and
external expectations and deliverables to the group. This communication
becomes more important as team members engage and disengage from the
process. It enables existing team members and new team members to be on
the same page throughout the project. Successful verification teams are also
careful to not overload the process with documentation. These teams make
concise documentation part of each deliverable, providing enough detail to
track the process but not requiring unnecessary overhead.

26 Professional Verification

Build a Team

The goal in building a successful verification team is to have a team whose
total abilities are greater than the sum of its parts. Successful verification
teams most often consist of individuals who have a common baseline knowl-
edge of verification as well as specialized knowledge in specific areas. Each
team member is familiar with basic test writing and debugging skills in addi-
tion to an in-depth knowledge in an area, such as software development,
testbench development, scripting, or emulation.

Just as engineers learn the profession of verification through experience
and mentoring, verification teams also are built through experience and
benchmarking. As a team works together, it learns to utilize the individual
skills to meet the goals in the most efficient manner. Successful teams also
benchmark themselves against other teams and learn from the best practices
of these teams.

Successful verification teams build a cohesive team by selecting the right
members and keeping them together. These teams select members with a
wide range of abilities and experience. The verification process has many
complex tasks that require experienced individuals, and it has many basic
tasks that can be performed by less-experienced members. Having a well-bal-
anced team keeps everyone engaged in the process and provides a path for
development. A trademark of many of the most successful teams is that they
have worked together for many projects. Keeping a verification team together
is often difficult, but the benefits are enormous.

Use Someone Skilled in Management

Managing a process as complex as verification requires experienced
project management skills and a well-qualified leader. Project management
requires planning, negotiation, and monitoring—skills not often found in the
most technically talented individuals. Yet, in many organizations, the man-
ager or lead of a verification group got their position by being the most
technically skilled individual. Successful teams separate the need for compe-
tent project management from the need for competent technical leadership. A
competent verification project manager provides value to the entire develop-
ment team and uses verification experience to make the right trade-offs. The
manager also provides a voice for the verification team to make sure that their
concerns are heard.

Most successful advanced verification teams have competent project man-
agement as well as technical leadership. While these teams may not have
specific roles or titles for these individuals, there are always one or two mem-
bers who know what is going on and are coordinating the efforts of the team.

Chapter 4: Successful Verification 27

Successful teams develop their project plans and schedules in coordination
with the overall project and do not let the other groups dictate their work.
Organizations today understand the need for verification leaders and are des-
ignating lead or management roles for these individuals.

VERIFICATION PROCESSES

The verification process is made up of many smaller separate processes
and techniques. Each of these smaller processes has its own unique tools and
methods. Selecting these tools and techniques carefully results in the most
efficient overall process.

Choose the Right Tool for the Job

Selecting the correct verification tool or method for a particular task is
vital to maximizing the overall efficiency of the process. Using the correct
tool at the correct time is a matter of understanding the needs of the task and
the capabilities of the available tools. Many teams rely solely on the tools that
they are most experienced with. Other teams try to always use the newest tool
or technique to gain a competitive advantage. The truth is that no one
approach can address all your problems. In some cases, using the tools that
you are most familiar with is the most efficient course, and in other cases new
tools are called for.

Selecting the correct tools can save a team more than just time and effort.
Verification tools can be quite costly. Some teams believe it is cheaper to buy
only a few types of verification tools rather than a wide range. Teams should
factor in the cost of the total quantity of tools and not allow themselves to get
tied into one approach or tool. Verification tool vendors have moved from
providing individual point tools to offering platforms of tools. These plat-
forms reduce the overall cost of verification and also give verification teams
the flexibility to select the correct tool for their job.

Successful verification teams select the correct tool for a job by first eval-
uating the needs of the task. Simulation is often a trade-off between speed and
control. Fast simulators, such as hardware simulators, have the best perfor-
mance but often provide poor visibility and control for debug. Software
simulators have excellent control and visibility but at slow speeds. Successful
teams use lower performance simulation during the early stages of debug
when bugs are plentiful and switch to hardware simulators when simulations
require long run times. Many teams rely solely on simulation for their verifi-
cation, but some bugs, such as clock domain crossing bugs, cannot be
simulated easily. Successful verification teams realize these bugs can be

28 Professional Verification

detected faster with less effort with dedicated static tools. These are just a few
of the possible trade-offs teams should make.

Choose the Right Information for the Job

Verification tasks require more than just tools; they require accurate and
efficient use of design information. The most basic trade-off verification
teams need to make is between the speed of a test and the fidelity of its
results. Simulations can be performed at very high speeds but provide results
that are not specific enough to be useful. Simulations can be performed with
great amounts of detail but take a long time to complete. Choosing the right
balance of detail and speed is vital for maximizing overall verification
efficiency.

Design information is more than just the functional representation of the
design. Input stimulus and output responses also characterize the design.
Choosing the correct level of detail for this information facilitates the reuse of
verification components within the testbench and eases test development.
Choosing the correct level of detail for collecting coverage information and
waveform data eases the collation and use of this data for debug.

Successful verification teams select the correct levels of information for
the design representation and verification data at the beginning of the process.
These teams might use a transaction-level model of the design to perform
early performance and architectural analysis, which requires high speeds but
only basic levels of detail. Later these teams use an RTL or gate-level repre-
sentation of the design to verify the actual implementation details. Successful
verification testbenches are often based on a common API that facilitates
reusing components written with a common level of detail. Using these test-
benches, along with common databases, facilitates the fastest, most efficient
test and debug processes.

Automate

Automating the various tasks of the verification process reduces the time
and effort the team spends on repetitive tasks. The verification process con-
tains many individual tasks that might be repeated hundreds or thousands of
times during a project. Automating these tasks might not speed up the individ-
ual task, but it does free up valuable resources to concentrate on other tasks.
Resource loads can be balanced to utilize the available resources, such as
computers and software licenses. Automation can also facilitate higher qual-
ity results. Human error can easily enter long repetitive tasks, such as running
large test suites and collecting results. Removing the chance of human error
assures more consistent reliable results.

Chapter 4: Successful Verification 29

Automation also helps in documenting the verification process. Proper
scripting of the various verification tasks provides a verification record. These
scripts can be used to understand the process if the project needs to be redone
or modified at a later date.

Successful verification teams automate every chance they get. Any pro-
cess that is performed more than a few times is automated. The most common
automated verification tasks are building, compiling, and executing simula-
tions. By the time a large project nears completion, a simulation regression
environment can contain thousands of tests that need to be run and rerun with
each change in the design or environment. Maintaining the integrity of the
model as it nears tapeout becomes mandatory. As time moves on, parts of
older projects are often incorporated into newer projects as IP. Automating
the verification environment facilitates this process, making it easy for the
new project to integrate and test the older code.

APPROACHES

Proper management of time, resources, and tools results in a highly effi-
cient advanced verification process. The last group of principles encompasses
the overall verification approaches that successful verification teams use.

Keep Verification Real

The closer the verification of a design reflects the design’s real operating
environment the better the quality of verification. It may seem obvious that
verification teams should strive to create test environments and stimulus that
reflect the real-world conditions the design will face. But many verification
teams get caught up in developing complex testbenches and using complex
formal techniques and lose the big picture. The goal of verification, and of the
entire development process, is to produce a product that works as intended.
This goal not only keeps the verification “real,” it is also more efficient. It is
impossible to verify everything in a large complex IC. Teams must prioritize,
and the highest priority should be what is most important to the end product.

Another benefit of keeping verification real is that it becomes easier to
understand. Test writers and debuggers can more easily comprehend their
task if it can be related to a real application. Humans naturally think in terms
of concrete concepts, such as real images or communications. Using verifica-
tion environments that allow engineers to conceptualize what they are
working on makes verification easier and more efficient.

Successful verification teams develop environments that reflect the real
world whenever possible. These teams utilize input data such as images, pro-

30 Professional Verification

gram streams, or traffic flows taken directly from real-world applications. The
teams also utilize tools, such as emulators that allow the design to be tested in
a real-world environment. This extra verification not only verifies that the
design works correctly, but also verifies that the testbench and models that
were used are correct for future use. Finally, these teams write their environ-
ments so that tests can be written at a higher application level and results can
be debugged at that same high level. Transactors or adapters are written to
translate between these higher level data abstractions, such as an image or a
packet, down to the signal level necessary for detailed verification.

Stress the Design

Completing a verification process can be a daunting challenge. Just com-
pleting the verification of the known functionality can take more time than is
available. Unfortunately, many of the most difficult bugs are later found in
areas of the design that were unknown to the verification team. Stressing the
design outside of its normal operating parameters during the verification pro-
cess can flush out these bugs and prove to be a very valuable exercise. Using
processes that rely on random generation of stimulus can explore and stimu-
late the design in ways the verification team might have never considered.
These techniques often find bugs that otherwise would not be found until the
design were in the lab or at a customer site.

Stressing the design can provide more than just bugs. Often design teams
believe that they know the bottlenecks in the design that are limiting the per-
formance to an acceptable level. They may target these areas in later revisions
to improve performance or to add new features. Stressing the design beyond
the expected performance level can verify that these areas are indeed the bot-
tlenecks and quantify their real effects. In many cases, unknown bottlenecks
are discovered that would limit the actual benefits of future revisions of the
product. In addition, by stressing the design with illegal data, the team can
learn how the design will respond to these conditions. This information can be
valuable for lab debug, fault detection, and error recovery efforts.

Successful verification teams concentrate on stressing the design outside
of its normal operating parameters once they reach a stable level of verifica-
tion. These teams use random stimulus generators within their testbenches to
generate data, sequences of data, and timing relationships that may never have
been considered. The teams also stimulate the design at data rates faster than
required to oversubscribe the design and discover where performance bottle-
necks exist. The teams apply illegal or unpredictable stimulus data to identify
the reaction of the design to these possible error cases for future reference.

Chapter 5

Professional Verification
From second-class citizen to respected profession

Some might argue that functional verification is not a true profession
because of its low visibility and secondary role in the development process. A
closer look shows that today functional verification is an integral part of the
development process, requiring professional skills and organization. The term
professional has many meanings. Many people associate professional with
being paid to do a job, such as a professional athlete or musician. One might
also associate professional with the expectation of a high-level of quality. The
Cambridge Dictionary defines professionalism as “the qualities connected
with trained and skilled people,” and a professional as “a person who has a
job that requires skill, education or training.” Professional verification encom-
passes all these meanings.

UNDERSTANDING PROFESSIONAL VERIFICATION

Professional verification is the practice of functional verification using
advanced verification practices. The emergence of functional verification as a
profession in its own right has come about slowly. In the not so distant past,
verification was thought of as simply one part of the design process or as a
stepping stone in the career path of an engineer. Today, if you walk into a
company that develops advanced ICs or attend a conference on IC develop-
ment, you are likely to find engineers with verification in their job title.
Because the job of functional verification has become so difficult, it requires a
new class of engineers: design verification professionals.

Professional verification assumes a certain standard of quality. Many
development teams do just enough verification to get by. Their goal is to ver-
ify enough before the tapeout date and hope that nothing has slipped through
the cracks. While this risk-management approach to verification is suitable
for many efforts, one expects more from professional verification. A develop-
ment team using professional verification expects first-pass success and a
final design that meets all the functional requirements on schedule.

Professional functional verification requires specific skills, education, and
training. It requires knowledge of advanced software development, digital
logic design, failure analysis, design automation, and the understanding of
complex protocols and applications. Functional verification is not a topic cur-

32 Professional Verification

rently taught in engineering schools. Industry-training courses and available
texts focus more on the tools or languages used in the verification process
than on the actual practice of design verification. Engineers new to verifica-
tion obtain the required skills by working with advanced verification
engineers or by being thrown into the job and learning from the mistakes they
make.

You may be wondering why this emphasis on professional verification,
since in many companies verification is considered a lower class job. You see
all the promotions, raises, and recognition going to the designers or architects
of the ICs, and little if any credit given to the engineers doing verification.
When times are hard, verification engineers are the first to lose their jobs and
are treated as easily replaceable. The perception of many in management and
design is that verification is for those engineers who are inexperienced or lack
the skill for design or architecture. To get a better understanding of the need
for professional verification, it is important to look at how verification
impacts a company’s success.

The lesson learned during the Internet boom and subsequent crash is that
the most solid successful companies focus on profit. Companies that provide
the most value to the customer for the least cost are successful. Every process
is measured by how it impacts the company’s profits. Functional verification
is no different; its importance lies in how it improves value and reduces costs.

THE VALUE OF VERIFICATION

Several factors can affect the value of a product. Having a product to mar-
ket first provides a direct value in not only the premium price that can be
charged, but also in the early adoption of the product. Having more features in
a product can also improve the value if it increases the market base or pro-
vides differentiation from competitors. There is also value in being able to
quickly adapt to the changing requests of customers. Functional verification
can add value to a product by positively affecting these factors.

Time to market is a common concern of many development teams. Verifi-
cation is the most time-consuming task in developing ICs. If there is not a
separate verification team, analysis has shown that designers actually spend
more time doing verification than design. Reducing the amount of verification
time through better practices reduces the time to market of a product. An anal-
ysis done by Cadence Design Systems showed that by using best verification
practices a team can reduce the total time spent in verification by up to 50 per-
cent. In addition, time is saved by doing quality verification. A functional
error that is missed by the verification process and found in the lab, testing, or

Chapter 5: Professional Verification 33

at a customer site can cause months or even years of delay in getting the prod-
uct to market.

Deciding which features to include in a product is not determined by the
time or difficulty in implementing them, but in the time and cost it takes to
verify and test them. In many cases, adding a new feature to an IC is as easy
as adding a mode register and some random logic. But if you are doing basic
brute force verification, this simple change can cause the verification effort to
grow exponentially. Advanced verification based on adaptability and reus-
ability can more easily handle and limit the effects of large feature sets.
Efficient advanced verification allows for the verification of more features in
the same amount of time, thereby increasing the value of the product.

When economic times are hard, adapting to rapidly changing customer
needs becomes a must. If you have a rigid development environment, includ-
ing an inflexible verification environment, it is difficult, if not impossible, to
meet your customers’ requests. Having an adaptable, reusable, and efficient
verification environment enables you to respond to customers’ needs and pro-
vide greater value.

What is the value of getting your products to market sooner, with more
features, higher quality, and meeting your customers’ needs? Professional
verification can help you reach these goals. But what is the cost of achieving
this value?

THE COST OF ADVANCED VERIFICATION

The cost of the raw materials to manufacture an IC is minimal; the real
costs are in development. First, there is the labor cost of designing, verifying,
and testing the device. Then there is the investment in resources, such as com-
puters and software licenses. There is also the cost of producing prototypes
before the manufacturing process is started. Finally, there is the cost of lost
revenue when the market window for a new product is missed.

Many companies attempt to cut labor costs by either hiring the cheapest
engineers possible or overloading their designers with additional verification
tasks. The belief is that a team of inexperienced engineers or contractors is as
productive as a smaller team of more experienced advanced verification engi-
neers. This approach might make sense for one project or for projects of
limited size and complexity. But if the cost of hiring, retraining, and redevel-
oping verification environments for each new project is compared to
developing an advanced, automated, reusable, and flexible verification envi-
ronment over the period of several projects, the advanced approach will
almost always be more cost beneficial.

34 Professional Verification

There is an old saying that you cannot put a price on quality. Professional
verification assumes a high standard of quality, and some may wonder if the
cost of that quality is worth it. The most measurable form of quality in func-
tional verification is missed bugs. A bug that makes it through the verification
process comes at great cost to the development team. A bug found after tape-
out may require a respin or metal fix for the device, costing engineering
dollars as well as lost time. A bug that makes it into the lab or validation pro-
cess risks not only a respin of the device but the costs of time and dollars in
reverifying and revalidating the IC or system. A bug that makes it to the cus-
tomer can lead to additional engineering costs, but can also cause a loss of
business, which is far worse.

Respins, metal fixes, reverification, revalidation, and customer bugs are
common experiences for all IC development teams today. While the addi-
tional cost in time and resources for advanced verification might seem like an
unnecessary investment, the potential savings in time and money provides a
far greater return than a low-quality job.

VERIFICATION: SECOND-CLASS CITIZEN

If verification plays such an important role in the development process and
can be shown to improve a company’s bottom line, why do most companies
treat it so poorly? Some of this poor perception has to do with the evolution of
verification. For many years, teams could thoroughly verify their designs with
simple techniques. The challenge of designing and implementing a simple
design far outweighed the effort required to verify the design. Thus, verifica-
tion was viewed as a straightforward process that was not as important as
other areas in the development process.

As the size and complexity of designs grew, the verification problem
began to explode. The more enlightened teams understood that verification
was quickly becoming one of the most important parts of the development
process and required attention and respect. But other teams still felt that they
could make do with verification as they had in the past by patching the holes
in their process. The complacency toward verification is like the story of the
frog. If you put a frog into a pan of boiling water, it will immediately react
and jump out. But if you put it in cold water and slowly turn the temperature
up, it will sit and boil to death. Many development teams have been lulled by
their past successes without paying attention to the changing needs of verifi-
cation and are finding themselves in boiling water, not knowing that it is time
to jump.

Chapter 5: Professional Verification 35

The Perception of Verification

One challenge any group responsible for testing or assuring quality has is
the perception by the larger organization that they are holding up progress.
The most visible task the verification team does is find bugs, which most
often identify mistakes made by other team members. While a verification
engineer may be proud or even excited to have discovered a difficult bug in
the design, the rest of the organization often views this as bad news or a set-
back. It is human nature to be embarrassed by mistakes, and most
organizations plan for success. Verification teams expose the mistakes of oth-
ers and are the first to identify when a project is off track. This leads to the
negative perception that verification is a necessary evil rather than seeing it as
a positive factor in the development process.

Organizational issues often contribute to the negative perception of func-
tional verification. Verification is often considered a training ground for new
engineers or a dumping ground for poor engineers. Companies want their
most senior and most qualified people to be in the role of designer or imple-
menter. New hires are often first put in verification to “prove themselves” or
to “pay their dues” before advancing to other development positions. Engi-
neers who do not perform well in other roles are often moved into verification
where they can “do less damage.”

With most of the talent in the organization residing outside the verification
team, it is likely that the engineers promoted to management are not from ver-
ification backgrounds. If you look at most engineering or project managers
today, few have verification backgrounds. This lack of knowledge within
management leads to poor decisions regarding the importance of verification.

Verification Training

Formal verification training is hardly available. Few, if any, verification
schools offer functional verification as part of their curriculum. The reason
most often cited is the lack of “pure research” areas in functional verification
today. Only recently have periodicals begun to address verification topics or
have organized verification conferences. Advanced verification is most often
learned through experience and working with dedicated professionals. This
has led to small pockets of functional verification expertise throughout the
industry, but very little organization. Areas such as silicon process technology
and design automation have thrived because of organized groups and consor-
tiums, which do not exist for functional verification.

36 Professional Verification

CHANGING CURRENT PERCEPTIONS

While many believe that functional verification will always be an after-
thought in the development process, there are actions that can be taken to
advance the perception and profession of functional verification.

Develop the Profession of Verification

Verification engineers need to become more visible in the industry. Verifi-
cation leaders should work within their companies to promote the belief that
verification is an important part of the business of developing ICs and
requires dedicated professionals. Career paths should be established for tal-
ented engineers to remain in verification. Some companies are implementing
cross-training by requiring engineers to be well-trained in verification as well
as design and implementation. Project managers and future business leaders
need to have some background in verification as well.

Externally, verification engineers need to become more visible in publica-
tions, organizations, and in schools. Verification engineers should stop
lamenting the lack of training or relevant articles and start generating demand.
Once publishers and training institutions understand the true size of the verifi-
cation market, they will begin to address it.

Set Standards for Excellence

Verification engineers cannot expect their organization’s view of their
value to improve until they set some real standards for the value they provide.
Expectations of what is good or excellent verification vary widely from team
to team and company to company. Some companies believe they have a world
class verification team but still routinely have multiple spins of their chips and
find bugs long after verification is done. There is simply no standard for
excellence in verification.

Advanced verification teams need to set the standard for what is expected
of verification. First-pass success should be an accepted standard, not a wish.
Verification teams should be able to provide accurate metrics on the quality of
the design and the progress of the verification process. Verification teams
need to attain these standards on schedule repeatedly, so the difference
between advanced verification and ad hoc “just get it done” approaches can
be clearly seen.

Chapter 5: Professional Verification 37

Train and Develop Leaders

The process of verification is different from other processes in the devel-
opment of an IC. While most processes are driven by building or creating
something, the verification process is driven by integrating and testing an
existing design. The verification process has many interdependencies and
requires a balance of coordination with the development of the design and the
independent development of test environments for the design. Teams who
attempt to perform advanced verification without a detailed plan and without
leaders to drive the plan will most likely fail.

Share Best Practices

Verification teams need to work together to develop and share best prac-
tices. Consultants and engineers who have moved from company to company
have come to understand that while some verification teams have strengths in
some areas, no team is strong in all areas. Every team can benefit from an
understanding of best practices in a wide range of verification topics. Many
verification teams believe that their processes and approaches to verification
are a competitive advantage, and that sharing this information with other
teams would negate that advantage. While no team should willingly give their
competition an advantage, best practices can be shared in open forums in a
general manner. Describing a best practice and implementing it are two dif-
ferent things. In the next section of this book, we will now look at a unified
verification methodology based on the best practices of experienced advanced
verification teams.

This page intentionally left blank

SECTION 2
THE UNIFIED VERIFICATION METHODOLOGY

This page intentionally left blank

Chapter 6

The Unified Verification Methodology
A new approach to verification

The previous section described the issues in advanced functional verifica-
tion today and detailed the need for a verification methodology that removes
fragmentation and improves the speed and efficiency of the process. This sec-
tion presents the Unified Verification Methodology (UVM) developed by
Cadence Design Systems, which addresses this need. In fall 2002, Cadence
Design Systems assembled a group of experienced verification engineers with
varying industry backgrounds to create a unified verification methodology.
The team was not limited to using a specific set of vendor tools or practices.
The only constraints were that all the methods explored were in use today and
that the resulting methodology dramatically increased the speed and effi-
ciency of the verification process.

The first version of the Cadence UVM was released in February 2003, and
since then advanced verification teams have used the UVM as a blueprint for
developing their own unified verification methodology. The UVM program
continues at Cadence as the team identifies new practices and refines the

42 Professional Verification

methodology based on real customer experiences. This chapter describes the
key concepts of the UVM.

WHAT MAKES A METHODOLOGY UNIFIED?

Teams have always worked at bringing together the different tools they
use into an integrated solution. A unified verification methodology, however,
brings together the tools and technologies used in various tasks as well as uni-
fies the processes and the people associated with the verification process. In a
unified verification methodology, the tools work together in a coordinated
fashion. Different tools run in parallel so that processes are not duplicated for
each tool. The collection of data is shared among tools so that duplicate cap-
ture mechanisms are not required. The results are then presented in a common
format or environment for the user to easily understand.

Traditional methodologies are often broken into individual stages, with
rigid entrance and exit criteria for each stage. These criteria often create
dependencies between processes, making it difficult or impossible to move
back and repeat a previous stage. The stages of a unified verification method-
ology are tightly coupled and less rigidly defined, so it is easy to move
forward or backward in the process without losing time or data. The team can
move as far down the process as necessary with the information available. As
more detailed or updated information becomes available, the process can be
easily repeated. This continuous refinement enables the team to move forward
without dependencies and adapt as new information becomes available.

Perhaps the most important aspect of a unified methodology is that it facil-
itates communication. The number of people involved in developing a
complex system, coupled with the amount of data associated with the devel-
opment, can lead to gross inefficiencies and functional bugs if not handled in
a coordinated manner. A unified verification methodology provides the pro-
cesses and mechanisms for facilitating efficient high-quality communication
across the development team so that engineers have the correct and most up-
to-date information they need to accomplish their jobs.

IMPROVING SPEED AND EFFICIENCY

The rate at which a task or event is performed is critical for a complex pro-
cess like IC development, which consists of many different tasks. Improving
speed involves more than just using faster CPUs or faster simulators. Rather it
takes organizing the verification tasks into a unified methodology to provide

Chapter 6: The Unified Verification Methodology 43

the mechanisms and infrastructure for applying the needed performance
gains. For example, the major focus in most IC verification today is simula-
tion, which is done at many different stages of the verification process at
many different levels of abstraction. Improving the overall speed of the simu-
lation process is a major factor in increasing the speed of a verification
methodology. Increasing the speed of developing testbenches and finding and
fixing functional bugs also contributes to improving verification speed.

In today’s resource-limited environment, we also need to improve effi-
ciency. The verification process is constrained by the amount of human
resources, compute resources, software costs, and time available. It is impor-
tant to find an optimal balance between the time and energy needed to
complete a task. Removing dependencies and ensuring that each phase in the
process maximizes the reuse of previous stages improves the efficiency of the
verification process.

The Cadence UVM is focused on dramatically improving the speed and
efficiency of the verification process by unifying the different process stages
and design domains to eliminate fragmentation in the verification process.
The methodology is based on best practices used by advanced functional ver-
ification teams today. The best practices come together in the UVM to
provide a blueprint for advanced functional verification. The methodology
covers all process stages from system design to system design-in and
addresses all the design domains found in today’s complex System-on-Chips
(SoC), including analog, digital, and algorithmic digital designs.

KEY CONCEPTS

Before we dive into the UVM, it is important to first understand several
key concepts that run throughout the methodology.

Functional Virtual Prototype

A functional virtual prototype (FVP) is a golden functional representation
of the complete design and its testbench. For many years, system models have
been used in the development of ICs. System architects and designers have
used system models for architectural analysis and to perform early functional
trade-offs. Software developers have used them to run and debug their hard-
ware-dependent software before it reaches the lab. The difference between
these past uses of a system model and an FVP is that an FVP’s primary focus
is the functional verification of the design. An FVP unifies the use of a system
model for software, architectural analysis, and functional verification to
reduce the work required to develop this model. The central focus of an FVP

44 Professional Verification

is functional verification; it is the unifying vehicle for a unified verification
methodology.

The FVP consists of functional models, interface monitors, and testbench
components. The FVP is segmented into various functional sub-blocks in a
manner similar to the implementation. Each sub-block is modeled to reflect
the functionality of that block accurately. A block may first be modeled at a
high level of abstraction based on an architectural specification or a behav-
ioral model. The first version of the FVP can serve as an executable
specification. Development teams can use this version as a source for golden
models to verify the implementation of the functional blocks. As the blocks
are implemented, they can be substituted back into the FVP, creating a mixed-
level model for integration testing. The FVP is a continuously changing and
evolving prototype. At any time, the FVP can consist of a variety of different
models at different levels of abstraction.

It is important to differentiate between a model’s accuracy and fidelity. An
accurate model always returns a correct answer, although the answer might
entail a broad range of responses. The fidelity of a model describes how
closely the model represents the responses of the final implementation. An
FVP must always be accurate in providing an answer or range. Its fidelity
might change, depending on the knowledge available and the intended use.

The FVP also contains interface monitors that are located at the primary
interfaces of the design and between each functional sub-block. The inter-
faces must support the transferring of information and data between each sub-
block at different levels of detail or abstraction. High-level models may trans-
port data as a data structure or as transactions. Implementation-level models
may transport data at signal or bus level. Independent of the level of informa-
tion transferred, information monitors verify the correctness of the data and
the protocol of the transfer to ensure that correct data is being sent and
received by each block.

The final parts of the FVP are the testbench components. Usually, a sys-
tem model is considered independent from the verification environment. The
testbench is included in an FVP to provide a common reference to the test
suite and infrastructure during each step in the verification process. At any

Chapter 6: The Unified Verification Methodology 45

point in the development process, the FVP test suite can be run to verify that
the design still meets the original system goals.

A question commonly asked about an FVP is how do you verify that is it
correct? If the golden model is to be used to verify the implementation, an
error in the golden model will result in an error in the implementation. The
FVP should be verified in a similar manner as the final silicon will be verified
in the lab. The test suite should verify that the design meets the specified level
of functions, features, and performance. The test suite and test components of
the FVP are very application-specific. Providing the testbench and applica-
tion-level test suite ensures that the FVP continues to meet the original
product goals.

The FVP is used throughout the UVM. As the design is being architected,
the functional models are developed at a high level and tested within the FVP.
Once the architecture is complete, the FVP is provided to each team develop-
ing a sub-block. These teams can reuse the model and testbench from the FVP
to verify the implementation created by the sub-block design team. After the
sub-block is verified by the individual development teams, the functional
model for the sub-block is replaced in the FVP by the implementation of the
sub-block. The test suite is run on this mixed-level FVP to verify that the
implementation meets the application-level goals and to verify the integration
of the sub-block. Each sub-block is replaced in the FVP until all have passed.
Finally, all the models are replaced within the FVP, and final application-
level testing is performed on the implementation-level FVP.

46 Professional Verification

The FVP serves several critical roles in the methodology:

Unambiguous executable specification

Fast executable model for early embedded software development

Early handoff vehicle to system development teams

Reference for defining transaction coverage requirements

The source for subsystem-level golden reference models

Golden top-level verification environment and integration vehicle

Transaction-Level Verification

A dramatic improvement in design productivity occurred in the 1990s as
designers moved from working at the Boolean gate level to RTL. Moving to
RTL enabled designers to operate at a functional level that was more intuitive
than simple gates, since designers think in terms of finite state machines, arbi-
ters, and memory elements. However, as design sizes have increased and
more functionality is placed in a single design, the verification process also
needs to move up a level in abstraction from RTL to the transaction level.
Verification engineers operate at an application level, where the concerns are
complex data formats, algorithms, and protocols. To be productive, verifica-
tion engineers need to think and work at the more intuitive level of packets,
instructions, or images, and not at bus-cycle levels.

A transaction is the representation of a collection of signals and transitions
between two blocks in a form that is easily understood by the test writer and
debugger. A transaction can be as simple as a single data write operation or
sequences that can be linked together to represent a complex transaction, such
as transferring an IP packet. Figure 11 shows a simple data transfer (repre-
sented as B) linked together to form a frame, further linked together to form a
packet and finally a session.

Transactions are used throughout the UVM. A transaction taxonomy that
specifies the layers of transactions, from the simplest building block to the

Chapter 6: The Unified Verification Methodology 47

most complex protocol, is created early in the development process. Having a
common transaction reference enables testbench elements and analysis tools
to be reused. The following table shows the transaction taxonomy for Figure
11.
Table 1.

Level

Interface

Unit

Feature

Application

Interface

Transaction Taxonomy

Data Unit

Byte

Frame

Packet

Session

Byte

Operations

Send, Receive, Gap

Assemble, Segment,
Address, Switch

Encapsulate, Retry,
Ack, Route

Initiate, Transmit,
Complete

Send, Receive, Gap

Fields

Bits

Preamble, Data, FCS

Header, Address, Data

Streams

Bits

Using transactions in the UVM improves the speed and efficiency of the
verification process in several ways:

Provides increased simulation performance for the transaction-based
FVP

Allows the test writer to create tests in a more efficient manner by
removing the details of low-level signaling

Simplifies the debug process by presenting information to the engi-
neer in a manner that is easy to interpret

Provides increased simulation performance for hardware-based accel-
eration

Allows easy collection and analysis of interface-level coverage infor-
mation

Unified Test Environment

The core of any verification methodology is the test strategy. Quite often
teams are encouraged to base their entire test strategy on the latest tool or
technique, regardless if it is the most appropriate. Instead, the UVM unifies
the test environment by utilizing the strength of the appropriate tool or tech-
nique for the specific task in a common infrastructure. The goal is to create a
unified test environment that is highly effective and efficient. We will briefly
touch on some of the components in this environment, and go into greater
detail in subsequent sections.

48 Professional Verification

Assertions

Assertions are created in the UVM whenever design or architecture infor-
mation is captured. You can use verification tools to verify the assertions
either in a dynamic manner using simulation or in a static manner with formal
mathematical techniques. These assertions are then used throughout the veri-
fication process to verify the design efficiently. The UVM uses three types of
assertions:

Architectural assertions prove architectural properties, such as fair-
ness and deadlocks.

Interface assertions check the protocol of interfaces between blocks.

Structural assertions verify low-level internal structures within an
implementation, such as FIFO overflow or incorrect FSM transitions.

Assertions improve the speed and efficiency of the verification process in
several ways:

Speed the time of locating difficult bugs by identifying where in a
design the bug first appears

Automate the instrumentation of monitors and checkers within the
design

Quickly identify when stimulus or interfacing blocks are not behav-
ing as the implementer intended

Identify bugs that did not propagate to checkers or monitors

Chapter 6: The Unified Verification Methodology 49

Detect protocol violations even if they do not cause a functional error

Provide feedback to stimulus generators to modify their operations as
the test progresses

Coverage

Coverage information improves efficiency by identifying areas of the
design that have not been stimulated, tests that are not testing what they were
intended to test, and functionality that is incorrect. Coverage cannot deter-
mine when the design has been completely verified, but it can indicate areas
for more concentration.

The UVM uses four types of coverage information:

Application coverage identifies whether specific high-level features
of the design have been stimulated, such as automatic data retries.

Interface coverage identifies whether sequences of stimulus and
responses at the interfaces of the design under verification (DUV)
have been verified.

Structural coverage monitors the operation of low-level structural ele-
ments, such as FIFOs and FSMs, to identify which parts of the imple-
mentation have been verified.

Code coverage identifies which areas of code have been stimulated.

Table 2. UVM Coverage Types

Coverage Type

Application

Interface

Structural

Code

When Defined

Architecture Definition

Implementation Defini-
tion

Micro-Architecture
Definition

Coding

When Measured

System Modeling and
System Verification

After Block Tests and
Subsystem Tests

After Block Tests

After Block Tests

Examples

Auto Retry, Cache Hit

Packet Types, Instruc-
tion Sequences

FSM States and Arcs,
FIFO Thresholds

Statement, Expression

Coverage improves the speed and efficiency of the verification process in
several ways:

Identifies areas within the design that have not been tested

Guides testing to the most important areas of the design

Ensures intended functionality has been tested

Used to select the most efficient and effective suite of regression tests

50 Professional Verification

Hardware Acceleration

Accelerating the speed of simulation allows more testing to be completed
in a shorter period of time. The key to using simulation acceleration in the
UVM is choosing the most efficient method for the test you are running. As
the verification process moves from short unit-level tests to longer subsystem-
based tests, it is important to monitor the performance and debug times
required for the tests. Hardware acceleration should be used once the test pro-
cess has reached a stage where the run time is the dominant performance
factor. Acceleration-on-demand enables the user to switch from simulation-
based testing to hardware-accelerated testing using the same environment for
development and debugging. An example of this process is shown in Figure
13.

This example is for a small block design with a non-synthesizeable test-
bench. The standard run time for tests of an average-size design block is
shown on the X axis. The Y axis shows the total test time, including compile
time, run time, and debug time. Figure 13 shows that for short tests simulation
is the fastest method. Once the test length reaches around 70 minutes, acceler-
ation is the fastest. This is the point where acceleration-on-demand is
effective. Each team should do a similar analysis, taking design size, test-
bench performance, and debug times into account to determine when to
accelerate a simulation.

Acceleration also speeds regression testing. Often small changes to the
design or test environment can have unwanted and unknown effects on other
parts of the system. Development teams set up a regression environment to
verify that changes in the design or environment have not caused unwanted
effects. It is important for development teams to receive confidence in their
changes in the shortest possible turnaround time. Regression testing is often
performed on large server farms running jobs in parallel. The time for com-
pleting the regression is dependant on the number of tests, length of the

Chapter 6: The Unified Verification Methodology 51

individual tests, the number of servers in the farm, and the simulation speed.
When the number of tests and length of tests causes the total regression time
to exceed the acceptable turnaround time, acceleration should be used. Accel-
eration reduces the run time of longer tests and allows large groups of shorter
tests to be run in less total time.

Finally, acceleration provides the necessary speed improvements to facili-
tate system verification. Acceleration can be used in a simulation-based
system verification environment to simulate large system integrations with
embedded software. Acceleration is also at the heart of emulation-based sys-
tem verification. Accelerating the design in an emulation environment
connects the design to real-world stimulus and instrumentation while running
and developing the system software.

METHODOLOGY OVERVIEW

Before diving into the details of the methodology, it is important to under-
stand the overall flow from a high level. Perhaps the best way to describe the
methodology is to compare it to the basic methodology used by teams today.
Most development today begins with a group of architects or system design-
ers working together to define the product at a high level. Simple models or
spreadsheets might be used for reviewing design trade-offs and partitioning.
This effort often results in a written architecture specification, which is given
to an implementation team or group of teams to develop. In many cases, the
implementation teams create an implementation or micro-architecture specifi-
cation detailing what they intend to implement. The designers begin
implementing individual blocks of the design in parallel. At some point, veri-
fication engineers may help each block team verify their block.

As each block is completed, it is integrated with other blocks, until the
complete device is assembled. At this point, integration testing is done at the
device level to verify that the blocks work together correctly. When the
device is functionally correct, feature testing and performance testing verify
that what was created meets the original product-level goals. If errors are
found in integration testing or during performance or feature testing, the
design is sent back to the development teams for fixing or redesign. After the
design has passed functional, feature, and performance testing, it can be given
to the back-end teams, software developers, and system design and verifica-
tion teams.

With this methodology, testing is uncoordinated and occurs late in the
development process. Once the architecture specification is agreed upon, each
team works independently on their portion of the design. There is no mecha-

52 Professional Verification

nism to verify design assumptions, that changes still meet the original goals,
or that these assumptions and changes are in sync with what other groups are
expecting. The individual teams must wait until integration testing to discover
problems due to incorrect, out-of-date, or incomplete specifications. The
teams must also wait until final feature and performance testing to know
whether the individual parts they created meet the goals of the device as a
whole. These delays often result in bugs found late in the development pro-
cess, causing individual blocks to be redesigned while the project is at a
standstill.

Another significant issue is the lack of performance at key times. In the
early stages of development, simulation performance is appropriate for veri-
fying individual blocks with isolated tests. However, as blocks are integrated
together and test suites become more complex, simulation performance of the
full device can degrade to less than 10 percent of original levels. Yet this is
when integration testing, performance analysis, and feature testing are done,
and where software development needs to begin. All of these tasks require
high performance simulation, but this is where the worst performance is
found.

Teams attempt to overcome this performance bottleneck by using a hard-
ware emulator or an FPGA. Unfortunately, without proper preparation,
converting to an emulator or FPGA can be a daunting task, requiring many
resources and weeks or months of work. Even when using an emulator or
FPGA is planned from the beginning of the project, it is difficult to predict the
final results. The solution for many teams to this performance bottleneck is to
spin early silicon and hope the device is functional enough to complete testing
and start software development.

Chapter 6: The Unified Verification Methodology 53

Advantages of the UVM

The UVM begins with developing a transaction-level FVP early in the
development process. The verification team develops the FVP as the architec-
ture is being finalized and the micro-architecture is beginning. A common
mantra of many project experts is to begin with the end in mind. The verifica-
tion team begins by developing a test plan for the final system based on the
functional, feature, and performance requirements specified by the architects
and system designers. The verification team is engaged in the project earlier
than before to develop the FVP and work with the architects and system
designers to develop the application-level test environment. This enables
them to get up to speed sooner, help with architectural and performance anal-
ysis, and provide input into the testing strategy before the design is finalized.

Once the FVP is completed, it is distributed to the various groups partici-
pating in the project. The system designers use the FVP to model the device in
the context of the larger system. The software developers use the FVP to
begin developing low-level hardware-dependent software, such as device
drivers. The implementation teams use the FVP as an executable specification
to develop the individual blocks that make up the final system. The block-
level implementation teams use the FVP model as a reference model to verify
that the responses of the implementation match the responses of the model.

The design is also verified by substituting the implementation for the
model in the FVP and rerunning the FVP test suite. If changes are required to
the block as implementation occurs, the changes can be verified within the
context of the FVP and then propagated out to the other development teams.
Verifying the implementation first against the model from the FVP and then
in place of the model in the FVP verifies early in the development process that

54 Professional Verification

the design meets the specified requirements and works correctly with other
blocks.

As blocks increase in size and testing becomes more complex, simulation
performance degrades. The UVM overcomes this performance degradation
with hardware acceleration. With the UVM, each block is moved into a hard-
ware accelerator to provide the required performance. A hardware accelerator
allows the testbench to run at its original speed on a workstation while the
design is mapped into hardware for acceleration. Each block is tested and
added to the hardware accelerator as it is completed, first alone and then with
other accelerated blocks.

After this, integration and final testing should be straight forward, since
each block has already been verified to meet performance and functional
goals within the FVP and has been verified to work with the other models
within the FVP. In addition, the entire device has been hardware-accelerated,
so the necessary performance is available. The final step is to include all the
implementation blocks and rerun the FVP test suite on the entire design. Cer-
tain tasks, such as software integration and system verification, might still
require added performance. Given that the design has already been run
through a hardware accelerator, the process of moving to an emulator is one
of disconnecting the testbench and hooking the design to an in-circuit
environment.

Chapter 6: The Unified Verification Methodology 55

The UVM provides advantages over a standard RTL methodology in both
speed and efficiency. Through a combination of transaction-level modeling
and hardware acceleration, the UVM can provide a 100X performance
improvement at the chip level throughout the verification process. Early inte-
gration and software test allows you to find issues sooner and introduces
parallelism into the development process to improve overall efficiency.

56 Professional Verification

This high-level description of the UVM has left out many of the important
details on how to accomplish this methodology. The following chapters of
this section describe more thoroughly how the UVM can be used for your
design.

UVM System-Level Design
Creating an FVP

The first stage of the Unified Verification Methodology is system-level
design. During this stage, the product is defined, architectural measurements
and trade-offs are made, and detailed specifications are created. In many
methodologies, verification plays only a limited role. In the UVM, the verifi-
cation effort begins early with the development and verification of the
functional virtual prototype. In the UVM, the first stage is vital, because it
sets the groundwork for unification throughout the rest of the methodology.

This chapter discusses the differences between an FVP and a traditional
system model, the costs and benefits of using an FVP, and creating and veri-
fying it.

Projects are started in many different ways. Some projects begin as an
original idea developed from a blank sheet of paper. Others take an old idea
and create a new implementation. Some simply modify and improve an exist-
ing design. But no matter how the project begins, most follow a similar
progression from the initial idea to the final implementation. They only differ
in where they start in the progression.

Chapter 7

FROM WHITE BOARD TO FVP

Most projects go through three basic stages: idea generation, product defi-
nition, and implementation. The idea generation stage is the most dynamic
and where the steps taken differ from project to project and team to team. The
result of the idea stage is often a document that specifies what the problem or
opportunity is and presents a concept for a product as a solution.

The output of the product definition stage is a detailed specification of the
design and the environment it will operate in. The process specifies the algo-
rithms and functions, the external and internal interfaces, the block
partitioning, and the data flows. The product definition consists of waves of
refinement, where the first wave begins by defining the specific implementa-
tion characteristics, some in great detail and others in less. Each successive
wave further defines the details of the product, working toward the final
project.

If the product definition is detailed enough, the implementation stage
focuses on coding the design and meeting the physical and timing characteris-
tics. Quite often system-level design and architecture changes are made
during the implementation stage. Development teams use many different
mechanisms for developing the final definition of the design that the imple-
mentation teams will use, but the most common mechanism is the system
model. A system model is a high-level representation of the design that can be
simulated to explore possible architectures or functional trade-offs.

In the early stages of system-level design, high-level models of proces-
sors, buses, or interfaces help identify performance bottlenecks. The focus of
the system model at this point is interoperability and a fast turnaround in mod-
ifying and simulating various scenarios. System models are often thrown
away after architectural exploration or functional experiments are completed.
This is the first occurrence of fragmentation in the development process.
While it is usually not feasible to develop a complete FVP-like model for use
in early architectural analysis and system design, developing a system model
in a way that enables an FVP to evolve is highly beneficial.

This chapter focuses on the idea generation and product definition stages
of the development process and the role verification plays during these stages.

58 Professional Verification

An FVP versus a System Model

System models have been used for many generations of ICs. What is dif-
ferent about these system models and an FVP? In one word: verification.
System models are developed by architects and system designers who often
view functional verification as an afterthought, if it is considered at all. FVPs
are developed by verification teams in coordination with system designers,
with the primary goal of unifying functional verification.

The system models of the past have been ineffective for verification for a
number of reasons, partitioning being one of them. Architects and system
designers are not concerned with following a design partitioning that matches
the intended implementation. Algorithms and architectural elements are eas-
ier to model as they exist functionally, but these functions may be partitioned
in a different manner than the final implementation. If the partitioning of the
model does not match the partitioning of the implementation, it is difficult to
reuse the model for verification uses, such as reference models or integration
vehicles.

The format and level of abstraction at which the model was created also
makes them ineffective. System models are written at very high behavioral
levels or at very low cycle-accurate levels. Behavioral models are great for
speeding verification, but if they are at too high a level, they lack the imple-
mentation details needed for verification. If the models are written at too low
a level of abstraction, the verification speed is not improved and it is difficult
to keep these models in sync with design changes. The preferred level for ver-
ification is the transaction level, which provides the right mix of speed and
detail.

Another reason system models have not been used in verification is com-
pleteness. Architects and system designers are usually concerned with only a
portion of the total design. Design parts, such as standard interfaces or service
blocks, are not a major consideration for architects, so they are not modeled or
modeled inaccurately. Verification development requires a nearly complete
model as an executable specification. A system model is also not kept up-to-
date. Architects and system designers only focus on the very early stages of
the project, and who maintains the model in the later stages often becomes an
issue.

An FVP differs in that it is modeled from the beginning with a focus on
verification. This does not mean that architectural analysis and system design
are not considered or supported, but rather an FVP supports architectural
analysis, system design, and software development in a framework that uni-
fies these tasks with the verification process. The FVP is partitioned along the
same borders as the main implementation blocks and is developed at the
transaction level of abstraction. The FVP is owned by the verification team,
which ensures that it is kept up-to-date with design and verification changes
throughout the verification process. The FVP is a complete model of the sys-
tem and testbench.

Costs and Benefits of an FVP

An FVP can greatly aid the verification of many designs today, but for
some designs the cost of developing the model could be greater than the bene-

Chapter 7: UVM System-Level Design 59

fits received. Teams must have accurate information to determine the costs
and benefits before beginning development.

The costs of developing an FVP are measured by the time spent and
resources required. The time needed depends on the experience of the devel-
opers and the complexity of the design. The larger and more complex the
design, the longer it takes to develop a model. Less experienced engineers
need more time to learn a new modeling language and the concepts of high-
level modeling. Once an engineer has learned the basics, the modeling pro-
cess can take between 10 to 20 percent of the time required to implement the
design. This time can be lessened by reusing models from previous designs or
purchasing models already completed.

How long it takes to develop an FVP depends on when it is begun and how
resources are used. If resources are taken from other tasks or tasks are put on
hold until the FVP is completed, the project will be delayed. If people are
engaged earlier in the process when they are usually idle, and the model is
completed in parallel with other tasks, less time cost is needed. In addition, if
parts or all of the FVP can be combined with other efforts, such as architec-
tural modeling or software development, the cost is reduced. Teams need to
decide who will be developing the FVP, when development will begin, and
how much can be reused or leveraged from other efforts to calculate the true
cost.

The benefits of using an FVP are measured by the time saved and the qual-
ity of verification. The up-front investment in time and resources for
developing an FVP is offset by the savings in time and resources throughout
the development process. The most direct time and resource savings occur
when the FVP is used within the verification testbench. Having an early
model of the system lets the verification team to do more work in parallel with
the implementation team, thereby shortening the overall development time.
One of the most time-consuming tasks in developing a testbench is determin-
ing the expected results to compare against the results observed from the
design. Many verification teams end up embedding large parts of behavioral
representations of the design within the testbench or the tests to help deter-
mine what the correct expected result should be. Using the FVP in place of
this embedded behavioral information saves time and reduces the chance of
errors within the testbench.

Time savings can be realized in other ways. Finding architectural bugs
earlier in the process reduces the time wasted in redesign and reverification.
This time savings is difficult to quantify, since teams do not plan on having
architectural bugs. Past experience is the best way to determine what this sav-
ings might be. Software teams can also begin development earlier. This may
not be a verification time savings, but it might save time on the total project,

60 Professional Verification

since software development is often the long path in project development.
Time savings can also be realized when the FVP is used as an early-access
prototype for other development teams. Providing an accurate executable
FVP to a team that is designing this part into their product can save time and
respins later in the process.

The decision on whether to develop an FVP comes down to a trade-off
between the time invested up front and the time saved during implementation.
Teams should ask themselves what is the intended use of the FVP. Will it be
part of the testbench environment? Will it be used for architectural analysis,
software development, or prototyping? Once the intended uses are known, a
team can assess the development costs. It is important to remember that the
development costs are not constant. The first projects may come at a greater
cost, but as the team becomes more experienced and a larger library of models
is developed, the initial costs can be amortized across multiple projects. It is
also important to note that once you create an FVP, it may open doors to new
ideas.

The FVP consists of testbench components, design modules, and interface
monitors. The inclusion of the testbench is important, since the FVP provides
a design representation as well as the infrastructure and test environment to
use the FVP. Testbench components include stimulus generators for driving
data into the design, response generators for responding to requests from the
design, and application checkers to verify that the FVP is operating correctly.
Design modules are the functional models that make up the design. They are
developed at the transaction level and follow the refinement and partitioning
of the implementation as it develops. Interface monitors verify correct opera-
tion by passively monitoring the transfer of information between design
blocks.

The FVP is created early in the development process at the same time as
the implementation architecture is being defined. The system-level verifica-
tion team develops and maintains the FVP, which is refined as the design
progresses. The first step in creating an FVP is determining its intended use.
The FVP is not intended to be a one-size-fits-all solution: Each design and
each development process are unique and have their own set of challenges.
While the accuracy of the FVP must always be correct, the fidelity of the

Chapter 7: UVM System-Level Design 61

USING AN FVP

Service processor applications are designs where software controls a ser-
vice processor to handle basic startup and maintenance functions. They
require the least amount of fidelity in the FVP. In these designs, the software
needs read and write access to registers and memory space to perform such
operations as configuring mode registers, error handling, and collecting run-
time statistics. The FVP must closely model the software-accessible registers
within the system and provide basic register and memory functions. The algo-
rithms, data paths, and processes within the blocks can be a very high-level
implementation and non-specific.

With user interface applications, software controls the processor to let a
user control and monitor the operation of the system. These designs require
greater fidelity than a service processor application. The FVP needs to closely
model the software-accessible registers within the system and be able to mon-
itor run-time events as they occur. The algorithms, data paths, and processes

62 Professional Verification

design may vary. An FVP’s detail and fidelity are determined by its intended
use. There are three main uses of an FVP:

As an executable model for software development

As a reference model for subsystem development and integration

As a developed model for a design-in team

Each of these uses has different requirements for how the FVP should be
developed. A development team must determine which of these uses are rele-
vant to their design and what priority should be placed on each.

Software Development

Developing and debugging software using an executable model can save a
project time. Unfortunately, many software teams today have limited
resources and are not available to begin work on a new project until the hard-
ware has been developed. In this situation, the benefits of the FVP as an
executable model are limited. However, if resources are available, knowing
the amount of software to be developed as well as the intended application
gives the developer a good understanding of the fidelity required of the FVP
and the benefits it provides.

There are three basic types of software applications:

Service processor

User interface

Real-time

Most systems today are designed by a group of design chain partners. The
design for which the FVP is created will most likely be integrated into a larger
system by a different team or even a customer. The FVP provides these
design-in teams a model to begin developing their systems before the imple-
mentation is complete. In some cases, these design chain partners use the FVP
as part of their larger system model to test functionality and performance. The
FVP also provides an excellent vehicle for demonstrating to customers and
third parties that the design is progressing as expected.

FVP developers must understand the needs of their design chain partners.
The FVP might require sufficient fidelity for the design-in team to develop
their models as well as system software.

Chapter 7: UVM System-Level Design 63

within the blocks have to provide the visibility and control required by the
software UI.

Real-time software applications are designs where software is directly
involved in the functional processes and algorithms of the system. These
designs require the highest fidelity. In real-time software applications, the
software is tightly coupled with the hardware. The FVP must closely model
the software-accessible registers and memory as well as the algorithms, data
paths, and processes within the blocks. This modeling has often already been
done in the architecture stage of the design.

Subsystem Development

When creating the FVP, it is important to understand the specific needs of
individual blocks. Individual blocks either already exist in an implementation
form, such as third-party IP or reused cores, or they entail new development.
An existing design might not have a transaction-level model (TLM) built for
it, so the FVP team must create a TLM, which is used for integration purposes
only. A TLM for an existing design should concentrate on fidelity at the inter-
face level and only abstractly model the data path and control processes.

FVP blocks that need to be developed might require more detailed model-
ing. If the block will use the TLM in a top-down manner to verify the
individual sub-blocks as they are designed, the development team should
make sure that the TLM partitions the functions as they will be partitioned in
the design. If the development team is only using the TLM from the FVP for
full subsystem verification, internal partitioning is not necessary.

Design Chain Use

The FVP is created in a top-down manner, following the partitioning of
the system architecture. The first step is to identify the modules and the cor-
rect hierarchical partitioning. Next, a hollow shell of each module should be
created, with a name that matches the implementation module name. External
ports for each module are then defined and added to the individual modules.
Consistent naming between the model and the implementation is important to
facilitate future integration.

After the modules have been defined, the developer defines the channels
to which the modules are interfaced. Again, careful consideration and plan-
ning are necessary to provide common interfaces that can be used throughout
the process. Once the modules and channels have been defined, each module
has its individual processes defined. The modules are defined to be function-
ally correct representations of the corresponding implementation. Separate
threads for parallel processes are used with the state and stored in member
variables.

Often a subsystem has already been implemented when FVP creation
begins. In this case, a TLM may not have been created for the subsystem, or
the only model available is a behavioral model. A TLM can be created from a
behavioral model by surrounding the behavioral or implementation model
with a transaction-level wrapper. This wrapper translates the behavioral inter-
face into a transaction-level interface that can be used in the FVP. The
transaction-level wrapper captures the output of the model and calls the Sys-
temC transaction functions across the channels. The transaction-level wrapper

64 Professional Verification

CREATING AN FVP

Creating a Transaction-Level Model for an FVP

You can create the TLMs of the FVP from scratch, from other TLMs, or
from other model formats. You can create them from behavioral models, ana-
log models, or algorithmic models.

Creating a TLM from a Behavioral Model

Chapter 7: UVM System-Level Design 65

also receives transactions across channels from other subsystems and converts
the transaction information into a form the behavioral model can utilize.

Analog designs do not operate at the traditionally defined transaction
level. Analog designs operate in a continuous-time manner. A transaction in
the continuous-time domain can be thought of as a sequenced response over
the time unit. Thus, a TLM of an analog component looks very similar to a
standard continuous-time model. Analog algorithms are often first repre-
sented as high-level C functions and are refined down to behavioral models
that represent the implementation of the design. These models accurately
reflect the continuous-time nature of an analog circuit.

The important factor in creating analog models for an FVP is accurately
modeling how they will interface to the other subsystem models. In an analog
model, the interfacing between analog blocks is done in the continuous
domain.

Creating an Analog FVP TLM

Algorithmic digital subsystems are similar to analog subsystems in that
they are first modeled as continuous algorithms. Algorithmic digital sub-
systems are refined first to fixed-point models and then to discrete-digital
models. These subsystems interface between several different domains. Often
they interface to the analog subsystem, where the interface is modeled in a
continuous-time nature to start. Then, once a D-to-A or A-to-D converter is
placed at the interface, the algorithmic subsystem is modeled as a fixed-point
representation.

Algorithmic digital subsystems interface to the control-digital subsystems
in the FVP. This interface defines how the subsystem is configured for opera-
tion and provides the user with statistical information. It is usually a standard
bus interface and is easily modeled as a TLM.

Once the FVP TLMs are created, the model must be verified. Stimulus
generators drive data into the model, and response generators provide accu-
rate responses from the model. The generators directly interface to the FVP at
the transaction level. Separate drivers for controlling handshaking and signal
timing are not required. Stimulus generators can consist of directed tests, ran-
dom stimulus, or test vectors. Response generators provide the FVP models
with application-accurate responses to requests. They can consist of TLMs
from external components or be developed similar to the FVP models.

66 Professional Verification

The interfacing of digital and analog subsystems is usually accomplished
through digital to analog (D-to-A) or analog to digital (A-to-D) converters.
The D-to-A or A-to-D converter transforms the continuous-time algorithm
into a signal-level digital interface. This digital interface can then be trans-
lated to a transaction interface to enable connecting to digital TLMs.

Creating an Algorithmic Digital TLM

Creating Stimulus and Response Generators

Creating Interface Monitors

Interface monitors are placed between the TLMs, inside the FVP. Inter-
face monitors check the signaling on interfaces between blocks but, since

there is no signaling at the transaction level in an FVP, the interface monitors
observe the transaction interfaces, check higher level protocols, and collect
transaction information. The information collected is useful for debugging the
FVP, because interface monitors can identify where a transaction was incor-
rectly received, narrowing down the source of a bug. The transaction
information is also useful for measuring interface coverage within the FVP.

Architectural checkers verify that the FVP meets the specified architec-
tural, functional, and performance requirements. Architectural checks can
consist of performance monitors, comparisons to behavioral models, or com-
parisons to algorithms or data path models developed in signal-processing
workbenches.

One of the most complicated tasks in developing the FVP is verifying that
it operates correctly. Because the FVP is utilized as a golden reference model,
it is imperative that it is functionally correct or the implementation will be
flawed.

There are three layers that need to be verified to determine the accuracy of
the FVP:

Chapter 7: UVM System-Level Design 67

Creating Architectural Checkers

VERIFYING THE FVP

Performance and functional requirements

Behavior

Algorithms and processes

The methods for verifying the FVP are similar to verifying the
implementation.

Stimulus Generation

Stimulus generation is a mix of random and directed methods targeted at
early architectural and performance verification, along with interface tests to
smooth the integration process. The three layers of FVP verification are
encompassed in the methods used for stimulus generation.

It is important to verify the performance and functional requirements
early in the development process, so architectural errors do not cause redesign
later. This testing is done with directed tests to verify architectural behavior in

Architectural checks monitor and capture the response of the FVP to the
stimulus. The three layers of FVP verification are encompassed in the meth-
ods used for architectural checks.

The verification team works with the architects to define the functional
and performance requirements for the system. They then develop checkers to
verify this operation. Functional requirements can include calculation accu-
racy, event ordering, and correct adherence to protocols. Performance
requirements can include bandwidth, latency of operations, and computation
speeds. These checkers can be self-checking or require post-processing. In
any case, they are the basis for the architectural assertions to be defined later.

Architects often model some of the more complex operations of a design
at the behavioral level to create the best solution and to measure trade-offs.
These models are used as reference models for the FVP to verify that the
intended behavior of the design is implemented correctly.

Many functions of a design can be described as algorithms or simple pro-
cess descriptions. These algorithms and processes can be represented in many
different forms or languages. These functions within the FVP can be verified
by either embedding the representations into the models with a transaction-
level wrapper, or by running the representations in parallel to the model and
verifying that the outputs are equivalent.

It is important to consider the scope of the testing when developing archi-
tectural checks. The architectural checks are meant to test the operation of the
entire design to the intended specification. Implementation details of the sub-
systems are tested by the individual subsystem teams, and system verification
tests the correct interface with real-world stimulus.

68 Professional Verification

a basic, isolated manner. Early random testing may introduce too many vari-
ables, clouding the verification and making debug difficult. Once the directed
tests have verified correct basic operation, directed random testing is used to
test special cases and stress conditions for the architecture.

The FVP could be meeting the performance and architectural goals, but its
behavior does not match the architect’s intention. Directed and pure random
stimulus, along with behavioral monitors placed on individual modules of the
FVP, determine whether a unit is behaving in an improper manner, such as
dropping more packets than it should or bypassing stages in a pipeline.

Often the stimulus that was used to verify the algorithms in isolation can
also be used in a directed manner to prove the correctness of the algorithms in
the FVP. Otherwise, directed tests are used to stimulate the basic operation
and known corner cases of the FVP. Directed random tests are then used to
cover unknown cases.

Architectural Checks

Advanced verification techniques, including assertions and coverage anal-
ysis, speed the process of verification. Assertions are not commonly thought
of as a technique used in developing and verifying a system model. The com-
mon perception of assertions is of implementation-level Property
Specification Language (PSL) type checkers. Although standard PSLs and
formal tools are not available today for high-level models, the technique of
embedding checks within the design of a high-level model is still useful. At
the FVP level, these assertions can be coded in SystemC using standard print
statements to indicate detected errors.

Application coverage monitors are included with application assertions to
verify that each of the functional requirements has been stimulated before the
FVP is handed off to the next team. Architectural coverage should be mea-
sured after the basic system tests have been run, along with some random
tests. Interface coverage is also used throughout the development of the FVP.
When it is first developed, the FVP is transaction-based, so verifying hand-
shake and signaling coverage is not relevant. However, interface coverage is
important for identifying which stimulus has been applied to the design and
correlating the responses. Other advanced verification techniques that can be
used are discussed in other chapters.

Chapter 7: UVM System-Level Design 69

Advanced Verification Techniques

This page intentionally left blank

Chapter 8

Control Digital Subsystems
Verifying large digital designs

The second phase of the UVM is subsystem development. In this stage,
separate teams design and verify each of the individual subsystems that make
up the final system or device. The subsystems can be separated by function or
by design domain, allowing parallel teams to focus on development of smaller
individual pieces. Today’s modern SoC might consist of subsystems from one
of three design domains: control digital, algorithmic digital, and analog/radio
frequency (RF). Although each of these subsystems are developed and veri-
fied in different manners, they are unified in the UVM through the FVP. Each
block can use the models from an FVP as a reference model to compare to
during verification, and each subsystem can use the FVP as an early integra-
tion vehicle. The following three chapters discuss each of these subsystems in
more detail.

Control digital subsystems are the most predominant design domain in ICs
today. Many of today’s devices consist entirely of one or more control digital
subsystems. Control-based digital subsystems are developed from the specifi-

72 Professional Verification

cation of a control process. The designs may contain data paths but are not
based on algorithmic processing. The complexity associated with massive
digital subsystems has been the focus of much of the functional verification
efforts to date. Specialized tools for adding assertions and measuring cover-
age, along with specialized verification languages and methodologies, have
been developed to address this. Unfortunately, this focus has been the source
of much of the fragmentation found in functional verification today. These
focused methodologies and tools force the verification team to start develop-
ment from scratch, isolate the verification of the subsystem from other design
domains, and provide for little, if any, reuse during integration and system
verification. The UVM removes the fragmentation associated with methodol-
ogies focused solely on the digital subsystem level by using the FVP to unify
the different stages and design domains. The verification of a control digital
subsystem is broken into four phases in the UVM, as described in this chapter.

STEP 1: VERIFICATION PLANNING

The first stage of the control digital subsystem verification process is strat-
egy and planning. A level of verification planning was already done during
the architectural definition stage when the FVP was created. At that time,
planning focused on the system as a whole. Subsystem verification picks up
from this system-level plan and refines it down to individual subsystems. The
planning process for a control digital subsystem has four steps: setting goals,
defining strategy, planning tactics, and defining the measurement and analysis
mechanisms.

A team should not wait until they have all the necessary information to
begin planning. Instead, advanced verification teams begin planning with the
information they have. As new information becomes available, the plans can
be refined or updated. The planning process needs to include a feedback sys-

Chapter 8: Control Digital Subsystems 73

tem to make sure that the individual goals obtained, from the lowest feature or
test level up to the ultimate product goal, tie together.

Goals and Objectives

The verification planning process is driven and facilitated by the develop-
ment of a test or verification plan document. A successful verification plan
starts with the end in mind. The plan begins by defining the goals and objec-
tives for the verification of the specific control digital subsystem. The goals
articulate what will be achieved, when it will be achieved, and how success in
meeting the goals will be measured. Each team will have their own particular
goals that matter the most to their organization. Unless the project is intended
solely for research purposes, schedules and delivery dates often influence a
verification project.

Effort is often overlooked when specifying verification goals. It is impor-
tant to determine whether the project should expend a lot of effort on creating
reusable quality results or whether a “just get the job done” approach is more
appropriate.

Completeness is another area overlooked. Is it imperative that the com-
plete subsystem and all its features be verified at this time or are there certain
must-have features that are needed while others can be verified later? Every
verification plan should specify the quality of verification intended for this
project. In a perfect world, every project would verify to the highest level of
quality, ensuring no bugs escape the process. In reality, there are cases where
lesser levels of quality may be acceptable. For instance, if there are features
that will be tested in later stages of the process, such as system integration or
prototype stages, complete testing might not be necessary at this time.

74 Professional Verification

Strategy

Once a clear set of goals have been articulated, the next step is to develop
a verification strategy. Strategy is an overloaded term these days. For the pur-
poses of this discussion, we separate strategy from tactics. Strategy is the
general approach to be taken to meet the specified goals. Tactics are the meth-
ods and tools used to implement the strategy.

To develop a clear strategy, the team needs to first review the goals, the
design, and the environment the project must operate in. At this time, the team
should identify design issues and obstacles and prioritize them. Possible
issues or obstacles include the size of the design, the schedule, the number of
features to test, and how to determine when you are done. The most creative
part of the planning process is developing strategies that address the identified
issues and attain the desired goals. Groups generate ideas and strategies in dif-
ferent ways, varying from brainstorming sessions to mechanical problem-
solving practices. Regardless of the process, it is important to be open to new
ideas and keep the big picture in mind. Examples of strategies for addressing
common issues include:

Partitioning a larger design into smaller segments for isolated testing

Cutting the schedule by staging deliverables, or purchasing or reusing
older environments

Using random testing or automation to verify as much of the state
space as possible

Using specific coverage metrics to verify that the design is ready to
tape out

Tactics

After the verification strategies have been determined, the team can focus
on the tactics for addressing the strategy. The development of tactics is where
the real “go to battle” planning is done. One can think of it as similar to devel-
oping a playbook for a sports team or military unit, detailing the intended use
of the people and technology, the environment and infrastructure, and the
coordination and communication methods. Having a comprehensive play-
book keeps developers in sync and provides guidance to those who join later
or work in associated groups.

Listing the specific responsibilities and activities associated with each tac-
tic lets the team know the training and development needs as well as provides
clear directions for resources. In a similar fashion, detailing which tools and

Chapter 8: Control Digital Subsystems 75

technologies will be used with each tactic leads to smarter purchasing and uti-
lization decisions.

Perhaps the most important part of developing a tactical plan is detailing
the environments and infrastructure to be used, such as a description of the
testbenches to be developed as well as the APIs and interfaces to use. A
project might have many people moving on and off the project. Detailing the
basic testbenches and infrastructure enables them to come up to speed quickly
and operate efficiently. Finally, the tactics should describe the processes and
methods for maintaining communication throughout the project. Having all
this information together helps the entire team understand what needs to be
done and how it will be accomplished.

Measurement and Analysis

The final part of the verification planning process is measurement and
analysis. This phase details each goal down to the task level and articulates
how to determine whether a goal is obtained. Goals can include the develop-
ment of testbench components, stimulus scenarios to be tested, features or
functions to be verified, and integration with other components. The details
could specify the components to be built and tested, directed tests or stimulus
streams to be created, monitors or assertions to be placed in a design, or spe-
cific integration scenarios.

Identifying the tasks and features is only one part of the measurement and
analysis process. Setting goals without knowing the mechanism for verifying
the goal is dangerous and can lead to holes in the verification strategy. Asser-
tions or monitors can be used to identify that a directed test verified the
intended feature. Automated coverage tools can be used to identify that a spe-
cial coverage scenario was met. There should also be a way to track the status
as the project progresses. Correlating regression results or coverage analysis
information to the goals not only helps management track project status, it
allows the entire team to coordinate and adapt their effort to reach the final
goals.

The planning phase is an important first step in any complex process.
Although it is the first step, it does not end when the project moves into the
execution phase. A team should not begin execution before they have an ini-
tial plan, but they should also not wait for the planning process to come to
completion before beginning execution. Teams should begin planning with
the information available, refine the plan as the project progresses, and never
take their eye off of the final goals.

76 Professional Verification

STEP 2: ENSURING QUALITY INPUT

The old axiom of “garbage in leads to garbage out” is very applicable to
the verification process. Even the most powerful complex verification envi-
ronment is of little use if the HDL is so full of bugs that the tests never even
get started. Ensuring quality design input from the beginning limits the
amount of wasted time and effort for the verification team and allows the
project to reach completion faster.

This phase has two main goals. The first is using the right tool for the right
purpose. Simple typographic bugs happen in every design and can be found
with almost any verification technique, but why expend time and effort on a
complex tool to find a simple bug. The second goal is to clear the way for
downstream verification processes. Many verification processes have specific
requirements for the HDL code or test specific aspects of the design. It is
helpful to identify any issues that might impact downstream tools early in the
process while the designer is still engaged in developing the code. For exam-
ple, an incorrect clock domain synchronization issue might require the
designer to redesign large portions of the design. Identifying this issue early,
before millions of random simulation cycles have been run, alleviates the
reverification effort of design changes.

An important factor in this phase is to perform verification while the
design is being developed. At this stage, much of the verification effort relies
on the HDL designer. After the design is completed, designers move onto
implementation tasks, so it often becomes impossible to make the necessary
design improvements. Another important consideration is to not get in the
designers way during this phase. Verification needs to be automated, easy to
use, and have a high payback for a designer. Otherwise, the designer will
leave the work for the verification team to complete on their own.

The UVM identifies four specific tasks during this initial phase of verifi-
cation, described in the following sections.

Chapter 8: Control Digital Subsystems 77

Instrumenting with Assertions

Assertions have many uses in the verification process and are discussed in
several places in this book. Assertions define an operation of a design and
indicate whether the operation is incorrect. Assertions can take many forms,
such as HDL display statements, statements written in a dedicated assertion
language, checkers that can be instantiated within a design, or pragmas that
provide a shorthand indication of comment assertions. Assertions provide a
more direct and detailed checking of a design than normal end-to-end
checkers.

There are several types of assertions. The system designer develops high-
level assertions for verifying architectural requirements in coordination with
the FVP. Verification and integration teams develop interface assertions to
verify the protocol and operation of external or internal interfaces. Structural
assertions verify the operation of low-level implementation structures within
a design, such as the correct operation of a FIFO under overflow or underflow
conditions or a state machine following the correct transitions during special
case interrupts. The designer of a block is usually the only one who can deter-
mine what the correct assertion is and where to place it.

The UVM utilizes assertions at each of the different levels of design.
Structural assertions play an important role during simulation, integration,
and final verification. The designer should place assertions while the design is
being developed. Advanced verification teams have found that having another
engineer place structural assertions into a design can be very difficult and
time consuming, since the engineer is not familiar with the design. Advanced
teams have also learned that once a designer completes coding a block, it is
difficult to motivate the designer to go back and insert structural assertions.
The correct time to place structural assertions is when the designer is writing
the code.

Motivating a designer to place structural assertions within the design can
be difficult. Designers do not always see the value in placing assertions, since
they believe that the design is correct to begin with and verification is not
their responsibility. Overcoming these objections can be difficult. Advanced
teams have found that showing the designer the benefit of having less time
spent doing verification later in the process is one motivation. Another is the
ability to more easily identify where in a design a failure has occurred. The
designer should spend as little effort and time as possible in placing asser-
tions, because the easier it is to do, the more likely the designer will place the
assertions in the correct places. The UVM recommends that structural asser-
tions be placed using libraries of predefined checkers or simple pragmas
placed in the language.

78 Professional Verification

Linting

Linting is the most basic form of static verification analysis. There are
several different types of linting technologies available today, which are dis-
cussed in detail in Chapter 13. Designers should do linting up front in their
development process. The most basic forms of linting can identify simple
typographic errors or basic implementation bugs, such as unconnected buses.
Finding these errors quickly here is more efficient than in the front end of an
advanced tool or in the process of debugging a simulation failure. More
advanced forms of linting can be used to identify code issues, such as synthe-
sizablity or dead code that may cause tool issues later in the verification
process.

Verification engineers or the HDL designer can run linting tools, but usu-
ally a designer needs to act on the results. The more basic linting tools should
be available for designers to run at any time while they develop their code.
The more often the designer runs these tools, the better the quality of code
delivered to the verification team will be. Motivating the designer to run these
tools requires that the output be of good quality, without many false or incor-
rect violations. The tool should be fast and allow the designer to identify the
issue within their code quickly. Advanced verification teams have found that
the investment in time and effort to use linting pays off over the entire project
cycle.

Static Verification of Known Issues

Static verification is verifying a design without dynamic simulation. Static
verification is usually based on formal verification techniques that use mathe-
matical principles to verify a design. Formal verification is a large topic and
discussed in detail in Chapter 13. Formal verification techniques can be very
powerful, but can also be very difficult to use and time consuming. Several
specific applications, such as verifying clock domain crossings and state
machine reachability, can harness the power of verification in an easy-to-use
manner. Using these applications early in the design process before simula-
tion testbenches are available can identify bugs that can be fixed while the
designer is still engaged.

Clock domain crossings are a particularly important application of static
verification. Today’s designs often have many different clock domains and
the transfer of information between those domains requires tight synchroniza-
tion. You can attempt to simulate the different possible interactions between
the domains, but it is impossible to verify every possible combination of clock
skews. Verifying the synchronization logic is often left to visual inspection by
experienced engineers. The UVM recommends using static verification tools

Chapter 8: Control Digital Subsystems 79

once the design is completed to immediately identify incorrect operation and
get it fixed. This early detection of known design issues can save effort and
simulation cycles to reverify a design after a bug is found late in the project
cycle.

Static Verification of Assertions

Static verification techniques can also be used to verify the structural
assertions that the designer placed in the design. Verifying user-defined asser-
tions can be more labor intensive than focusing on known applications, such
as clock domain crossings. Depending on the assertion, the tool might need to
make assumptions about the possible stimulus of the design at the inputs or
the operation of blocks within the design that are not visible to the tool. These
assumptions can lead to the tool identifying issues that are incorrect because
they are based on incorrect assumptions. Qualifying the inputs of a design and
localizing the design so that the tools can produce quality results is a very
labor-intensive process. The UVM recommends using static verification tech-
niques to verify structural assertions within the design, but large amounts of
time should not be invested in the process if the results are not of high value.
It is recommended that you focus on violations that are not dependent on
input assumptions or black-box logic.

There are three main purposes of static verification. One is to identify
bugs within the design from assertion violations. These bugs are found sooner
in the process, thereby reducing the amount of resimulation required after the
fix is done. The second purpose is to identify incorrect assertions. Quite often
an assertion is written incorrectly by mistake. Finding these mistakes early
saves debugging incorrect violations later. Finally, it is to identify assertions
that are proven to never be violated. These assertions can then be removed if
speed is an issue, or tests might not need to be run because the assertion has
verified certain logic.

STEP 3: EXECUTION

The third and most time-consuming step in the verification of control digi-
tal subsystems is executing the verification plan. During this stage
testbenches are developed, tests are written, and the design is simulated in a
manner defined in the test plan. A verification team can take two possible
paths of execution. The traditional path is to break the design into parts, start
verifying the individual parts in isolation, and then integrate them together in
a flow that moves from the lowest level, or bottom up, to the top subsystem
level. The majority of verification teams today use bottom-up flows. A newer

80 Professional Verification

and more advanced approach is to start by verifying the highest subsystem
levels first and then break down the design into smaller parts for isolated ver-
ification as needed. This top-down approach allows teams to maximize their
efficiency through reusing testbenches and models. The UVM supports both
the top-down and bottom-up verification approaches.

There are many similarities between the top-down, FVP-based flow and
the bottom-up, specification-based flow. Even though the bottom-up flow
develops the testbench from the lowest unit level up to the subsystem level,
the planning and architecture for the flow is top-down. The only way to create
testbenches that can be reused as the design develops from the unit to the
block to the subsystem level is to plan ahead and know what will be required
at higher subsystem levels. Similarly, even though the top-down flow devel-
ops the testbench from the top SoC level down to the lowest unit level, testing
and integration are still performed in a bottom-up manner. Both flows use
transaction-based testbenches for performance, assertions for easy debugging,
coverage for efficient test development, and hardware acceleration for
increased performance.

The two flows differ in the development of the verification environment
and tests. In the top-down flow, the environment is developed from the high-
est levels (SoC FVP) down to lower levels, using common models and
testbench components. The SoC-level environment is developed first with the
SoC-level FVP. The FVP is refined down to the block and sub-block level,
and the testbench is developed in the same manner. This enables the verifica-
tion engineers to use the model to test their code, allows reuse of the models
in the FVP at different levels, and promotes parallelism and accelerated inte-
gration of the implementation when it is made available.

The bottom-up flow develops the testbench from the lowest level up. The
flow reuses testbench components from the lower levels as the design is inte-
grated and tested. Since a common model is not used, reference checkers
might need to be developed at each level or linked together. Also, the lack of
an accurate model means the tests and testbench components are developed in
isolation until the implementation is available. This might result in debugging
the implementation and testbench simultaneously.

Testbench Development

The method used for developing a testbench has a dramatic impact on the
overall performance and efficiency of the entire verification process. Reuse
speeds the development of testbench components. Limiting the amount of
application-specific information encapsulated in testbench components facili-
tates reuse. Raising the level of abstraction makes test writing and debugging
much more efficient. Using standard, defined interfaces facilitates the com-

Chapter 8: Control Digital Subsystems 81

munication between components, making it easier to work at higher levels of
abstraction.

High-performance reusable testbenches are based on standard components
with a common interface for communication at different levels of abstraction.
The basic components are shown in Figure 29.

Advanced Verification Techniques

While testbench development and simulation are the most used techniques
for control digital subsystems, other advanced verification techniques also
play an important role.

Assertions in Simulation

Assertions are used extensively in coordination with simulation and the
testbench. Architectural assertions developed in the FVP that are associated
with the subsystem are reused if possible. In many cases, the assertions are no
longer complete, since the design has been partitioned. These assertions are
then disabled at lower testbench levels. Interface assertions are also reused
from the FVP for external subsystem interfaces. Interface assertions are added
to internal interfaces as they are defined during micro-architecture. These
assertions are usually part of the interface monitor testbench components and
are specified outside the implementation code.

Coverage

Coverage techniques are used throughout the control digital subsystem
development. Application-level coverage defined at the FVP is usually mea-
sured at the SoC model and integration stages, since it often encompasses the
entire SoC. New application-level goals for just the control digital subsystem
are defined during micro-architecture of the subsystem and are implemented
in testbench code as monitors. These subsystem-level application-coverage
goals are measured at the end of subsystem testing. Interface coverage is first

82 Professional Verification

defined in the system test plan as part of the definition of the transaction tax-
onomy. The verification team defines the transaction types used at the
subsystem level and also defines goals for the types and sequences of transac-
tions driven into the DUV. Specific correlation goals between stimulus and
response are also defined at this time. Interface coverage is first measured
when block-level testing is completed. The team verifies that all specified
types of transactions have been stimulated, along with a large percentage, if
not all, of the combinations of transaction types. Specified correlation goals
should also all be measured before block verification is considered complete.
Interface coverage is also measured at the subsystem level to verify that all
transaction types have been simulated, along with a subset of the possible
transaction sequences.

The designer first adds the structural coverage monitors along with the
structural assertions. In many cases, assertions can be used to monitor correct
behavior as well as incorrect behavior. The verification team adds to these
coverage monitors in the form of structural assertions when they receive the
implementation from the design team. Structural coverage is measured when
block-level testing is completed. Block-level testing focuses on the specific
implementation features of the design; this is where structural coverage pro-
vides the most information. Structural coverage information is collected after
all tests have been run and passed, since it slows down the run times and does
not provide accurate information until the tests pass. Code coverage is also
run after block verification is complete. The verification team identifies holes
in the structural and code coverage and investigates to determine whether the
stimulus is lacking, the design is in error, or there is dead code. Coverage is an
iterative process in which the results are analyzed and modifications are made
to the tests or implementation until the team has addressed all coverage holes.

Acceleration on Demand

Acceleration is used in the control digital subsystem to run long tests
faster and run efficient test regressions. Many test sequences take long peri-
ods of time to set up because of deep memory queues and complex control
space. In these tests, acceleration reaches the desired states faster than stan-
dard simulation techniques. The testbench can be run on the simulator in
lockstep with the accelerator or, for faster performance, the testbench can be
compiled into the accelerator. Testbench components should be developed
with acceleration in mind.

After a few tests have been run on the implementation and are passing, an
automated regression environment should be established. A periodic regres-
sion is run to ensure that changes to the implementation or the testbench
environment have not broken existing tests. As the number of tests grows in

Chapter 8: Control Digital Subsystems 83

the regression, acceleration and server farms complete the regression in a
timely manner. Server farms are used to run small run-time jobs in parallel
with automated scripts. Accelerators are used to run long regression tests and
run groups of shorter tests quickly in a serial manner, requiring a smaller
server farm and fewer licenses.

Top-Down FVP-Based Flow

The top-down FVP-based verification methodology for a control digital
subsystem is broken into three parallel tracks that converge throughout the
process. The first track is the further development of the FVP. The modeling
team updates the FVP as the implementation is refined. The FVP is used by
the other subsystems and possibly at other levels of testbench hierarchy. The
modeling team uses the FVP to develop models of other subsystems and reuse
TLMs for reference models.

The second track is the implementation of the design. The design team
uses an HDL to implement the design, starting with the development of small
implementation units. The development team adds structural assertions and
verifies these small units to a basic level of operation. The team then inte-
grates these units into design blocks and provides them to the test team for
verification.

The third track is developing stimulus. The test team begins by writing a
test plan focused at the subsystem level. The test plan is a continuation of the
system-level test plan, refining the test strategy and the plans for transactions,
assertions, and coverage. The test team executes the test plan on the blocks
provided by the design team to verify their functionality. The design team
continues integrating units into blocks for the test team to verify.

The UVM speeds the development and verification of the control-based
digital unit in several ways. Reusing models and testbench components from
the FVP and other subsystems decreases the development time. Test develop-
ment at the transaction level and the use of the FVP as a testbench raises the
level of abstraction and speeds the test time. Adding assertions and reusing
them throughout the verification process speeds the debug time and increases
the quality of the design. Adding hardware acceleration into the verification
process increases the overall performance of the verification process.

Figure 30 shows a top-down UVM-based flow for two blocks developed
independently and integrated into a subsystem.

84 Professional Verification

Bottom-Up Specification-Based Flow

The bottom-up specification-based verification methodology is broken
into two separate parallel tracks that converge throughout the process. Sepa-
rate verification and design teams each begin work from the lower blocks of
the design and work their way up integrating and testing. If the development
teams do not have separate design and verification teams, the two tracks can
be performed in serial developing the code first, then developing the tests and
verifying the design. The separate serial track is obviously slower and less
efficient, but requires fewer resources.

The first track is implementing the design. The design team uses an HDL
to implement the design starting with developing small implementation units.
The development team adds structural assertions and verifies these small units
to a basic level of operation. The team then integrates these units into design
blocks and provides them to the test team for verification. Once all the design
blocks are developed, they are integrated into the subsystem for integration
testing.

The second track is developing the tests and testbench environment. The
verification team begins by developing a detailed test plan for each block in

Chapter 8: Control Digital Subsystems 85

the subsystem and for the subsystem as a whole. The team then creates the
block-level testbenches in a manner that allows for reuse at the subsystem
level. Once the block-level testbenches are complete, the verification team
writes block-level tests and waits for the implementation blocks to be deliv-
ered by the design team. When the blocks are delivered, they are verified
individually. The team measures coverage and adds tests as required to meet
the specified goals.

After the blocks have been verified individually, the verification team cre-
ates testbenches to integrate and test the blocks together. Depending on the
size and number of blocks, there might be many integration steps or just one
integration into a complete subsystem. The testbenches are created with parts
from the block-level testbenches where possible. The verification team devel-
ops integration-level tests and verifies the integrated blocks together in the
testbench. Once the integration testing is complete, the subsystem is tested
inside the FVP provided by the SoC team to verify that it works with other
subsystems.

Figure 31 shows a bottom-up UVM-based flow for two blocks developed
independently and integrated into a subsystem.

86 Professional Verification

STEP 4: HARDENING THE BLOCKS

After interface and feature testing is complete, and constrained random
testing has run for multiple hours of simulation, the block is ready to be inte-
grated into the subsystem. In addition to integration testing, the block is
hardened by verifying it inside the FVP and verifying that it is ready for use in
acceleration, emulation, or prototype. If a top-down FVP-based flow is being
used, the block is verified against the FVP by running the FVP test suite
against the prototype with the implementation block replacing the model.
Transactors are added to the block to translate the transaction layer down to
the signal layer, as shown in Figure 32. Adding the implementation block can
slow down the simulations and require limiting the number of tests run. The
tests stress features that cross blocks, such as pipelines and multiple
encapsulations.

Large design blocks need the performance of a hardware accelerator to run
long test sequences or to test multiple blocks integrated together. Once the
block is stable, it is hardened by running it in isolation through the mapping
process on the accelerator. This allows for the early detection of mapping or
library issues that could stall the later use of acceleration. In a similar manner,
the design is run through any synthesis or mapping processes needed for
FPGAs or hardware prototypes used in system verification.

Chapter 9

Algorithmic Digital Subsystems
Verifying algorithms

Algorithmic digital subsystems are found in designs such as digital signal
processors (DSP), wireless communications devices, and general data path
subsystems. The development and verification of these subsystems has tradi-
tionally been left to the few specialists who understand the complex
algorithms and know how they should be implemented. Today’s SoCs com-
bine these algorithmic subsystems with standard processors and interface
blocks to provide a complete solution for the customer. The combination of
these subsystems requires more than just a few specialists to understand and
perform design and verification.

Algorithmic digital subsystems are developed in a top-down process that
refines the algorithm to a specific implementation, as shown in Figure 33. The
UVM speeds up the verification process by closely matching the refinement
process along with the FVP. The verification of a control digital subsystem is
broken into four phases in the UVM, as described in this chapter.

88 Professional Verification

STEP 1: VERIFYING THE ALGORITHM

Algorithms can be developed in many different ways. Some originate
from a known industry standard, such as image or sound encryption and
decryption algorithms. The designer might modify these algorithms for easier
implementation for different levels of accuracy, but the main function
remains the same. Verifying these types of algorithms is straightforward.
Stimulus is provided to the inputs of the algorithm and the responses are com-
pared with output from other existing algorithms. The main purpose in this
verification is ensuring that the algorithm is compliant with the standard.

Algorithms can also originate from combining and modifying existing
algorithms. The processing of data received over a communications channel
often must undergo multiple transformations before it can be utilized in an
SoC. These transformations might be implemented in individual components
that need to be combined and integrated into an SoC device. The communica-
tions channel may support new characteristics, such as higher speeds or less
data loss, which requires modifying an existing algorithm. Verifying these
algorithms requires verifying the integration and interaction of the algorithm
with the entire subsystem. Testbenches are developed from algorithmic mod-
els of the entire system. The system representation is verified by simulating
real stimulus, such as a communications channel, and then measuring the out-
put for accuracy. The main purpose of this verification is to ensure that the
algorithm provides the required system function.

While it is rare, some algorithms are developed from scratch. Not every
algorithm that is developed is destined to become an industry standard, but
they all must originate from initial development. Algorithmic development
from scratch is similar to the architecting of any complex system in that it is
driven by the designer’s thought process. In whichever way the new algo-
rithm is developed, it needs to be verified both in isolation and in the context
of a system. Verifying the algorithm in isolation ensures that the algorithm
meets its desired function over the entire range of operating conditions. Veri-
fication within the system ensures that the algorithm provides the intended
functionality in the context of the entire system. The main purpose of this is to
provide a quality algorithm that can be used in many different systems.

Algorithm Development in an FVP

An FVP can provide the ideal environment for developing and verifying
an algorithm. The FVP provides accurate models of the entire system, along
with stimulus generation and response checking. A modern mixed-signal SoC
provides functionality in both the continuous time domain implemented with
analog circuitry and the discrete time domain implemented in digital circuitry.

Chapter 9: Algorithmic Digital Subsystems 89

The partitioning between the two domains is often blurry at the early stages of
system design and architecture. An algorithmic subsystem most often exists
in this blurry partitioning range.

The FVP allows the architect to refine the system architecture to make the
correct partitioning between the continuous and discrete domains. An FVP
supports the development and verification of both domains together in one
system representation. The algorithmic subsystem can be modeled to operate
in either domain until final decisions are made. Converters between the
domains can be used to isolate the analog and digital circuitry as the architect
sees fit. Once the architecture is completed, the FVP should contain a mix of
models that interface at the transaction-level, along with algorithms and con-
verters that interface to the continuous time models.

Algorithmic Models

Algorithmic-based subsystems are most commonly used today in commu-
nications and multimedia systems. The system and environmental effects on
these types of designs are not as easily predicted as they are in control-based
designs. This unpredictability increases the likelihood of an error in the algo-
rithm not being detected until system integration testing. Algorithmic
development teams need to verify the intent of the design before implementa-
tion is performed. There are too many variables to wait for an accurate
implementation before beginning verification.

Algorithmic-based subsystems are developed by either modifying some
blocks in an existing system to provide a new function or reconfiguring the
blocks of existing systems to provide a derivative function. Both these pro-
cesses require accurate modeling of the individual blocks at different levels of
abstraction. A broad range of building blocks is necessary for developing and
verifying the subsystem. Communications and multimedia applications are
usually based on standards and protocol layers. A broad up-to-date library of
standard algorithmic system components is required for accurate development
and verification.

The algorithmic subsystem is modeled in the FVP based on the applica-
tion. The FVP is a transaction-level model of the system, but algorithmic
subsystems often operate and interface in a more continuous-time domain. To
correctly model an algorithmic subsystem for the FVP, each interface should
be modeled in the most efficient manner for passing information. Algorithmic
subsystems interface to other mixed-signal subsystems where a continuous
time-based interface is most efficient. The simulation of these mixed-signal
interfaces is discussed in Chapter 8. Algorithmic subsystems also often inter-
face to control-based subsystems. These interfaces are defined at the
transaction level similar to control-based digital subsystems.

90 Professional Verification

STEP 2:TESTBENCH DEVELOPMENT

As the algorithmic subsystem is refined from the algorithm to the fixed-
point representation to the final RTL or gate-level representation, the accu-
racy of the algorithm is affected. The testbench environment must verify that
at each stage of development the accuracy of the algorithm is still acceptable.
Verifying this accuracy causes the testbench to become a mix of models at
different abstraction levels. The environment might continue to be modeled at
the same level as the block under development moves toward the implementa-
tion level. Unlike a control digital subsystem where the responses of the
subsystem are verified against an expected result, algorithmic subsystems
require analysis of the responses to verify that the response is still within
specification. This is accomplished with detailed instrumentation that cap-
tures the response of the subsystem and produces diagrams and calculated
error rates for the developer to verify. This instrumentation is at the heart of
the testbench environment.

Algorithmic digital subsystems verification is most commonly started in a
separate but common integrated workbench environment, like the one shown
in Figure 34. These environments provide easy intuitive user interfaces for
selecting and connecting the various components that make up the testbench
environment. The workbench environments should include large libraries of

Chapter 9: Algorithmic Digital Subsystems 91

standard components that can be used as a template for new development or
as models for simulating the surrounding environment.

The algorithmic development workbench also includes tools for stimulus
generation, data collection, and result analysis. The generators provide the
developer with control over standard stimulus streams found in communica-
tions or imaging environments. Data collection tools can sample and store
data at various rates and depths depending on the developer’s needs. The
analysis tools provide calculators and graphing capabilities to quickly identify
results over a wide range of operating conditions.

As the subsystem development progresses, integration becomes more
important. The testbench continues to use signal stimulus generators and
instrumentation, but also begins to interface with the other subsystems. The
design is updated in the FVP so that integration testing can be performed
before the implementation is final. The software team develops code for the
application on an ISS of the processor core. The analog/RF subsystem is inte-
grated to detail the behavioral effects of the two subsystems. Finally, the
control path for the subsystem is verified by attaching the implementation to
the FVP in place of the TLM. Verifying the interaction with each subsystem
in the FVP before integration speeds up the final SoC integration.

STEP 3: VERIFYING THE FINAL IMPLEMENTATION

Once the algorithm has been developed and verified and then converted to
a fixed-point representation, it is ready to be converted to a standard hardware
implementation format. Automated synthesis tools can automatically convert
the fixed-point algorithm to hardware-gate netlist. These automated synthesis
tools provide limited control over many of the important characteristics of the
resulting implementation. Developers might choose to not use these tools if
they require tight control over the accuracy of the final implementation
results. Developers also find that the results of these synthesis tools are diffi-
cult to debug due to the readability of the machine-generated code. If bugs are
encountered in the implementation netlist, it is near impossible to locate the
cause in the generated code

Most developers choose to hand-code the hardware implementation of the
algorithm at RTL from the fixed-point algorithm. This provides the developer
with tight control over important implementation characteristics and provides
code that can be debugged more easily. No matter how the implementation is
developed, the chance of a bug entering the process is high. Verification of
the final implementation focuses on ensuring that the hardware implementa-
tion of the algorithm accurately reflects the intended algorithm. The first step

92 Professional Verification

in this process is placing the hardware implementation back into the algorithm
workbench used to verify the original algorithm. Care must be taken when
implementing the RTL so that it interfaces correctly in the workbench envi-
ronment. Unfortunately, the RTL model simulates at much slower speeds than
the algorithmic equivalent. This may result in reducing the amount of testing
performed in the environment to just the most critical.

The hardware implementation of the algorithm should also be verified in a
standard HDL-simulation environment. The algorithmic subsystem should be
simulated with the connecting digital subsystems to verify connectivity and
interoperability. The FVP or a modified existing control-digital subsystem
testbench can be used for this testing.

Advanced Verification Techniques

The initial development of an algorithmic subsystem concentrates on the
algorithmic and fixed-point representations of the design. Advanced tech-
niques, such as assertions, coverage, and acceleration, are not used during
these early stages. The conversion of the fixed-point representation to an
implementation can be done with automated synthesis tools or can it be done
in a more traditional hand-coded method. If the design is synthesized or hand-
coded, interface assertions are added to the digital interfaces of the subsystem.
Transaction-level interfaces are defined for access to control elements of the
SoC, such as the processor. The definition of these interfaces allows for inter-
face coverage and transaction debug analysis to be used in developing the
final implementation-level representation of the design.

To obtain optimal performance from the implementation, engineers
develop the subsystem in an RTL format similar to the control digital inter-
face. In these cases, structural assertions and coverage analysis are performed
in a similar manner for a control digital subsystem.

Tests developed at the algorithmic and fixed-point level run significantly
slower as the level of abstraction is moved down to the implementation level.
Acceleration speeds the execution of these tests and provides for integration
testing with larger subsystems. As part of the development process, blocks are
put through a hardening process, where they are run through the mapping and
synthesis stages of the hardware accelerator or the FPGA that will be used for
system verification. Preparing the design for acceleration early in the devel-
opment process eases the use of acceleration at the integration and system
verification stages.

Chapter 9: Algorithmic Digital Subsystems 93

STEP 4: INTEGRATION AND DESIGN HARDENING

Once verification of the subsystem is complete, it is ready to be integrated
into the final system. This integration is facilitated in the UVM through the
FVP. Integration of the subsystem into the FVP is performed in a similar
manner as the control digital subsystem discussed in Chapter 8. The main dif-
ference occurs when the algorithmic-digital subsystem needs to interface to
an analog subsystem. Interfacing the algorithmic subsystem to transaction-
level models is done using transaction interfaces similar to the control digital
subsystem. Interfacing to analog or RF subsystems is done through convert-
ers. These converters play a similar role as a digital-to-analog (DAC)
converter or analog-to-digital (ADC) converter plays in the final implementa-
tion. The converters convert the digital signal-level interface of the
algorithmic subsystem to the continuous-time domain of the analog or RF
models, as shown in Figure 35.

Large design blocks need the performance of a hardware accelerator to run
long test sequences or to test multiple blocks integrated together. Once the
block is stable, it is hardened by running it in isolation through the mapping
process on the accelerator. This allows for the early detection of mapping or
library issues that could stall the later use of acceleration. In a similar manner,
the design is run through any synthesis or mapping processes needed for
FPGAs or hardware prototypes used in system verification.

This page intentionally left blank

Analog/RF Subsystems
Verifying analog subsystems

Analog subsystems include the classic analog designs as well as RF
designs and high-speed digital designs developed in a full custom manner.
The common thread in each design type is the need for functional verification
at the logical level as well as the transient or AC level. Standard digital design
verification separates the functional verification of the design down to the
Boolean or gate level from the implementation verification of the gates and
transistors. Verifying analog subsystems is more complex because functional-
ity is equally impacted by the logical and physical design. Small changes in
placement, component sizing, or silicon process can dramatically impact
functionality.

The close relationship of physical design and verification with the func-
tional verification of analog subsystems has led to an integrated approach to
developing these subsystems. Standard digital devices might be split into sep-
arate design and verification tasks, with specialists in each area. The design
and verification of analog subsystems are considered integrated tasks often
performed by the same individual. Many analog developers consider func-
tional verification as part of the larger design task. The UVM focuses on
functional verification, but we cannot simply ignore analog subsystems as a
design-only concentration. Most SoC designs being developed today contain
both analog and digital subsystems. Verifying the individual subsystems as
well as the integration of the subsystems is part of an overall UVM. So
instead, we will focus on how the UVM connects to an advanced custom
design process to provide successful SoC verification. This chapter introduces
the Cadence Advanced Custom Design methodology and describes how it
integrates with the UVM.1

Cadence developed the Advanced Custom Design (ACD) methodology in
2003 to address the challenges of creating advanced custom/mixed-signal

Chapter 10

CADENCE ACD METHODOLOGY

1. This chapter is taken from the Cadence Design Systems’ white paper “The
Advanced Custom Design Methodology,” written by Kurt Thompson in
September 2003.

designs. The methodology addresses the primary challenge of predictability
by maximizing speed and silicon accuracy throughout the design process.

The ACD methodology is targeted at designers of full-custom designs,
including those integrating digital standard cells with full-custom designs.
The design scope focuses on key design domains of analog, custom digital,
and RF, and supports their integration with digital standard cell blocks where
integration is performed with a full-custom focus. The methodology is repre-
sented in Figure 36.

Predictability is predicated on two primary concerns: meeting the schedule
from the beginning of the design process and meeting performance
requirements.

Meeting the schedule requires a fast design process that supports thorough
and complete simulation and physical design. The design process consists of
numerous tasks. Many of today’s chips contain multiple blocks from multiple
design domains. Thus, it is imperative to design in as many blocks and per-
form as many tasks as possible in parallel, leveraging as much of the top-level
IP throughout the process as possible. This leads to the concept of design evo-
lution, where all the design IP is leveraged as it matures through the design
process. The top-down design process when applied to both simulation and
physical design facilitates a fast design process.

Multiple abstraction levels, from high-level design through the detailed
transistor level, are combined to support a mixed-level approach that targets
detailed design to only the points needed for a given test. This also allows for
leveraging the top level and using that information for block design and sub-
sequently reverifying the blocks in the top-level context.

At the other end of the spectrum is the need for silicon accuracy to achieve
the required design performance. Silicon accuracy relies on base design data,

96 Professional Verification

such as device models supporting accurate simulation and technology files
supporting interconnect and physical verification and analysis. Test chips,
which often comprise critical structures known in the past to be highly sensi-
tive, are also used to verify the feasibility of a process and the accuracy of its
corresponding process design kit (PDK). Often, a design group needs to add
components to the PDK to support a particular design style. Device models
might need to be expanded to combine or add corners, statistical modeling, or
other approaches the design team needs.

The silicon accuracy data is driven through the design process by detailed
transistor-level analysis, including layout extraction. These make up the lower
level of the abstraction chain, which then supports the calibration of these
results to higher levels of abstraction. This is the bottom-up design portion of
the ACD methodology.

The top-down and bottom-up processes work in parallel, producing a
meet-in-the-middle approach that balances the need for speed through the
design process and silicon accuracy, ultimately producing a predictable
schedule and first-pass success.

The ACD methodology relies on a meet-in-the-middle approach as the
most pragmatic method to achieving predictability on complex designs. This
is accomplished by leveraging the fast capabilities of top-down design
together with the silicon accuracy capabilities of bottom-up design. These two
primary vectors combine and essentially merge where the majority of the
design activity cannot be described as either top-down or bottom-up, but as a
combination of the two.

Multiple abstraction levels are used to represent the evolution of each
piece of the design. In simulation, behavioral models, which grow more
detailed as the design process moves forward, are used initially to bring in
measurements and data from post-layout analysis. In physical design, initial
size estimates and initial block abstracts are updated as more design informa-
tion becomes available, to where the actual layout is used for the top level.
The designer is actually working in the middle most of the time, with some
blocks at the fast, top-down stage, and some annotated with additional design
data and silicon accuracy using the bottom-up process.

Dealing effectively with legacy IP is often the factor that forces a meet-in-
the-middle approach. Rarely does a design team start from a clean slate (in
these rare cases, a pure top-down methodology can be employed from the
beginning). Legacy IP blocks must be upgraded to support the ACD method-

Chapter 10: Analog/RF Subsystems 97

THE MEET-IN-THE-MIDDLE APPROACH

98 Professional Verification

ology, which is done using a bottom-up approach. In most cases, the block
only has the transistor level and layout abstraction levels supported. As a
result, the abstraction levels are derived bottom-up and then fed to the top-
down process.

Abstraction levels serve as the foundation of the meet-in-the-middle
approach. Both simulation and physical design have predefined abstraction
levels, which are updated through the design process and support the mixed-
level capability. The abstraction levels are:

System models (simulation)—Generated from the FVP. They are the
highest level of abstraction represented. This also includes test-
benches for system simulations.

Behavioral HDL (simulation)—Most often refers to Verilog, Verilog-
AMS, Verilog-A, VHDL, VHDL/AMS, or VHDL-A descriptions. At
this level, only the circuit functionality is described, and the models
are targeted for fast run time.

Calibrated HDL (simulation)—HDL models are calibrated off of
transistor-level simulations, making the initial behavioral HDL mod-
els more accurate representations of the circuit behavior.

FastSPICE (simulation)—Uses the same transistor-level descriptions
as SPICE. Running a FastSPICE simulator gives the designer silicon
accuracy versus fast run-time options. Therefore, the FastSPICE
option can be considered a separate abstraction level.

Transistor (simulation)—SPICE-level simulation at the most accurate
level.

Preliminary floorplan (physical design)—Highest level abstraction
for the physical design process. At this stage, relative placement, ini-

The ACD methodology then uses these abstraction levels, which serve as
its components, across the entire design process. How these abstractions are
put together and used determines the level of predictability for the design. The
design team must manage a plan up front to determine where to bias the pro-
cess for silicon accuracy or speed, define a mixed-level definition to
accommodate it, and execute the meet-in-the-middle process.

Chapter 10: Analog/RF Subsystems 99

tial pin optimization, and other floorplanning investigations are sup-
ported.

Preliminary size estimates (physical design)—These are based on
previous experience, information from derivatives, initial process fea-
sibility studies, or any information on which the design can base a
block size.

Pre-layout abstracts (physical design)—When a transistor-level
description is ready, the preliminary size estimate can be updated to
more accurately reflect the layout, prior to the layout being com-
pleted.

Post-layout abstracts (physical design)—With layout complete, a
final abstract matching the physical representation can be provided to
the routing process.

Full post-layout data (physical design)—Supports final physical veri-
fication as well as chip finishing tasks and final tapeout.

100 Professional Verification

The ACD methodology can be described through a task-based flow as
shown in Figure 38.

A fast, silicon-accurate design process is achieved by working on the final
design up front and early in the design process. Since the top-level tasks pose
the most risk, and saving them until the end of the design process invariably
produces delays and iterations, it is imperative to move these tasks up front in
the design process. As the process moves along, blocks get further defined
and fed into a top-level evolution where top-level tasks, simulation, and phys-
ical design are continuously verified with updated design collateral as these
pieces mature. Supporting and maintaining this evolution is what ensures
predictability.

The primary advantage of enforcing a methodology that lets the top-level
continuously evolve is that difficult tasks, such as silicon analysis, RC extrac-
tion, routing, and physical verification, can be performed early on. While this
is not the final version of these tasks, interim data is used from these tasks
early on to drive design tasks through the hierarchy and support a fast design
process. Also, because these tasks are performed early on ensures that they
can be repeated downstream as the design matures. Knowing how long top-
level route through verification takes per design iteration helps the design

THE ACD FLOW

System requirements is the first task in the flow. This is where the UVM
and ACD methodologies come together. The development of an FVP at the
architectural development stage of the UVM provides the system require-
ments that are fed into the analog subsystem stages. The FVP can model
analog, RF, or custom digital blocks at a high system level using C-like algo-
rithms wrapped in a transaction-level wrapper. The FVP is given to the analog
subsystem teams. The team provides models for the individual subsystem
functionality and a system-level test environment. They can begin the fast
top-down simulation process using these models and the FVP environment.

Through the ACD flow, the functionality can be modified or refined.
These changes are updated in the FVP model and provided to the system-level
verification team for analysis and distribution to other subsystem teams. The
meet-in-the-middle process develops more accurate models. Where it makes
sense, these models can be integrated into the FVP models and tested within
the system-level test suite. Each of these steps ensures that the verification
and integration of digital and analog subsystems are performed in a unified
manner.

Chapter 10: Analog/RF Subsystems 101

team predict the time needed for each stage in the design process more
confidently.

System Requirements

Process Feasibility

With IC requirements generated from system specifications and the FVP,
process technology selection must occur. Evaluations of silicon accuracy
capabilities and various integration strategies must be performed to verify the
feasibility of the proposed integration approach. Issues such as performance,
noise characteristics, cost, circuit type, and risk are all considered.

IC Requirements Translation

The system design process produces specifications that the IC must meet.
The system design process leverages the UVM in using these requirements
through system-level models, testbenches, and measurements. The test-
benches may be further enhanced to match specific IC specifications where
the specification-driven environment can be set up. The specification-driven
environment then drives the chip level. Subsequently, the block level tests in a
manner consistent with the original requirements given to the design team.

With a process selected and its feasibility and silicon accuracy ensured,
the strategy by which the design will be built can be defined. At this point, the
design team has made primary decisions as to the integration strategy of the
design and identified the constraints to insert through the design process
based on silicon accuracy data.

Successfully executing a complex design is contingent on the thorough-
ness of the planning up front. No design can come together smoothly by
accident. With a strong plan in the beginning that specifies the top-level and
block-level requirements and the mixed-level strategies to use, a meet-in-the-
middle approach can drive each block design to ensure full coverage of
important design specifications and smoothly allow for blocks to have differ-
ent schedule constraints. By using the most up-to-date information available
at any given time, blocks that are done earlier can be verified in the top-level
context and be ready to go. This enables time and resources to focus on the
more complex blocks, which can also be using the most up-to-date
information.

At this point, the high risk points flagged for targeted verification are
examined. These could be areas such as analog/digital interfaces, timing con-
straints, or signal/data paths. What is extremely important at this stage is to
look at a simulation and physical design approach that can support verifying
these risk points. The mixed-level approach needs to be examined to deter-
mine the abstraction level these points are described at. For example, a key
analog/digital interface might need both the digital interface and analog inter-
face sections described at the transistor level, with detailed parasitic
information in between to ensure bit errors do not occur. If this is the case, it
should be determined how the design will be partitioned to allow this simula-
tion to occur in an efficient and repeatable manner. Often, this interface can
only be meaningfully tested at chip level over a variety of simulation setups.
Predictability is predicated on the assumption that all critical items are part of
a simulation and verification strategy and are repeatable and reliably execute
throughout the design process.

With critical circuit issues identified, the next step is to tackle design parti-
tioning as part of the simulation and physical design plans. It is important to
consider design partitioning from a functional perspective as well as an
enabler to use the design tools effectively to verify the identified critical cir-
cuit issues. The designer must consider the ability of the tools to handle
certain types of analysis, and design the circuit hierarchy to isolate each issue
and efficiently tackle the problems associated with it.

Design partitioning is nearly always looked at from a functional perspec-
tive. It is natural to partition in this way because it leads to block

102 Professional Verification

Simulation Strategy

Chapter 10: Analog/RF Subsystems 103

specifications and layout partitions, which in turn lead to a natural top-level
simulation strategy. It is important to keep this functional partition intact.
However, as in the case of an analog/digital interface, you must also consider
how the mixed-level capability can be employed to verify this interface at the
top level. One approach is to ensure that the block partitioning on the analog
side has an interface piece that can be swapped at transistor, and that the digi-
tal section also has its interface piece that can be swapped at transistor.
Parasitics can be added inside these transistor sections, and interconnect para-
sitics can be back-annotated in between these blocks. The rest of the chip
level can then be described at the HDL level of choice for increased simula-
tion speed. This is represented in Figure 39.

If the design partitioning does not take this situation into account, the next
option is to bring the analog and digital blocks into transistor level (assuming
this interface is critical and needs to be simulated at the transistor level).
While this achieves the objectives, it is quite possible this simulation would
be quite slow regardless of which simulator was used. Waiting for transistor
level also requires that the transistor level is complete, while the partitioning
approach allows for the analog and digital sections to be completed at their
own pace. If the interface sections get done first, the interface itself can be
tested before the analog and digital core pieces are complete, aiding a fast
design process. The ability to simulate the interface of concern at transistor
level satisfies the silicon accuracy requirement. As the design evolution
occurs, it might be desirable to bring more pieces into transistor level or to
simulate the analog blocks with the analog interface in transistor. This adds to
the predictability of the design process by enabling evolution and resolving
critical design issues early on.

Thus, the simulation strategy must be comprehensive to account for all
tests that must be performed and ensure that the design database is partitioned

For large SoCs, separate tables may be necessary for the major blocks.
Often, the first level of hierarchy for each block is much like a large chip and
can have all the issues associated with a chip. In these cases, separate add-on
tables, such as the one above, might exist for each block at the top level and
subsequently through the hierarchy, where applicable.

As the design evolves, analog HDL descriptions can get more accurate as
transistor-level simulation results are back-annotated into the models. There
is some simulation speed price for this. The simulation strategy is amended
where accurate models are needed. In block cases, it is likely that accurate
HDL is used across the board in conjunction with FastSPICE capability, and
SPICE-level capability for the most sensitive circuits.

For complex blocks that require some silicon accuracy at the top level, the
block designer might specify a particular mixed-level configuration when
simulating at the top level. At the top level, this block-specific configuration
exercises the simulation strategy. One view might be a non-hierarchical
behavioral view for the block, another might contain the internal sub-blocks
at accurate-HDL or transistor levels. This hierarchy and configuration must
be managed to match the simulation strategy.

Behavioral-Level Top-Level Simulations

The fast top-down design process necessitates a top-level HDL description
of the design. This description is consistent with the partitioning specified
through the simulation strategy and follows the declared hierarchy. The simu-
lations performed are consistent with the specification-driven environment
specified above, where individual tests are documents in the simulation strat-
egy. These simulations are then used as test beds for blocks under test. Block-
level testbenches are derived from the chip-level simulations capturing block-
level stimulus.

104 Professional Verification

conducive to that strategy. The simulation strategy should also take into
account the completion estimates of each individual block and specify the
mixed level for that simulation. For example, the following table lists some
example sections of a simulation strategy.
Table 3. Example Portion of Simulation Strategy

Top-Level Test

Codec Verifi-
cation

BER Function

DSP Verifica-
tion

Testbench

Functional A

System BER

Functional A

ADC
Verilog-AMS

Verilog-AMS

Verilog-AMS

DAC
Verilog-AMS

Verilog-AMS

Verilog-AMS

DSP
Verilog

Verilog

FastSPICE

CODEC

SPICE

Verilog-AMS

Verilog-AMS

Chapter 10: Analog/RF Subsystems 105

Block-Level Design

Model Calibration

Physical Design Strategy

Floorplan and Preliminary Top-Level Route

Updated Routes

Block-level design is based initially on the top-level simulations that ver-
ify the block specifications. Block-level design then encompasses the
detailed, silicon-accurate, transistor-level design. This also includes incorpo-
rating parasitic data and performing silicon analysis.

The silicon accuracy process, enabled through the bottom-up flow,
requires higher level abstractions to maintain as much of the silicon-accurate
information of the individual blocks as possible. This requirement is met
through calibrating functionally correct behavioral models with silicon-accu-
rate design data derived through the post-layout transistor-level simulations.

The top-level physical design strategy is specified in parallel with the sim-
ulation strategy, although there is some dependence on the specification of the
hierarchy and partitioning from the simulation strategy. The purpose of the
physical design strategy is to look at routing constraints, floorplanning con-
straints, and initial placement based on block characteristics. Based on these
constraints, decisions, such as at which level top-level routing is performed,
are flagged.

The floorplan and preliminary top-level route are critical in supporting a
fast design process. When an initial route has been completed, a repeatable
process exists to support continuous design evolution. The setups and con-
straints are reused and modified as the design evolves. These setups identify
issues at the top level early, where both design and tool issues can be fixed
before tapeout. Predictability can only be achieved if these steps are done
early and repeated throughout the design process.

As the design evolves, the initial setups are used to route updated physical
abstracts that represent more accurate size estimations, ultimately through
accurate block abstracts generated from the completed block layout process.

106 Professional Verification

RC Extraction

Silicon Analysis

Chip Finishing

Whenever possible, post-layout analysis on the first cut database should be
set up, even if the results are not totally meaningful at this point.

At the top level, silicon-accurate analysis that functional-based simulation
does not catch is performed. This includes IR drop, electromigration (EM),
and substrate noise analysis. Some silicon analysis can be performed at the
block level, and some can be performed during the updated routing tasks.

Chip finishing includes tapeout preparation tasks, such as adding a PG
test, layer editing, adding copyright and logos, and metal fill. At this point, it
might also be necessary to make final edits based on last minute design needs.

Chapter 11

Integration and System Verification
Verifying system operation

The final stages of the UVM are system integration and verification. Once
each of the individual subsystems has been verified using the UVM, it is time
to bring them together and verify the operation of the system as a whole. Sys-
tem integration and verification is where a verification methodology is put to
the test. Fragmented verification approaches fall apart when you try to inte-
grate incompatible test environments that have been developed in complete
isolation. Using a unified methodology facilitates efficient integration utiliz-
ing testbench reuse and common models. After integration, final system
verification is performed to ensure correct operation under real-world envi-
ronments. System verification techniques can vary depending on the specific
application, but the goals should remain the same. This chapter focuses on
best practices and techniques used in system integration and verification.1

SYSTEM INTEGRATION

In the UVM, each subsystem is continuously verified using the FVP as a
common reference, so the integration and test of the system should be
straightforward. The SoC team integrates each implementation block into the
FVP one at a time and runs the system test suite to verify the integration. The
lower level assertions and monitors should also be included in the integration
testing to aid debugging. The test plan is run with the FVP for comparison
checking. Once the system has been verified as equivalent to the FVP, the
implementation is considered the implementation-level FVP, and the original
FVP is the transaction-level FVP. The design is then ready for system
verification.

1. Parts of this chapter are taken from “Hardware-Based Verification Is Neces-
sary for Today’s Million Gate+ Designs,” by Ray Turner, Jr., published in
Cadence Design Systems’ Verification Talk newsletter, March 2002.

108 Professional Verification

Integrating a Subsystem into the FVP

Verifying the individual subsystem implementations in isolation in the
FVP does not verify that two subsystem implementations will work together
correctly. The SoC team must integrate each subsystem implementation
together in an organized fashion to verify that these implementations function
together correctly. The SoC team does this testing by adding one implementa-
tion block at a time into the FVP, separating implementation-level blocks
from transaction-level blocks with transactors. Subsystems are added one at a
time, if possible, to monitor the possible causes of integration errors. Once a
subsystem is verified to be operating correctly with its surrounding imple-
mentations, performance is improved by putting that subsystem into hardware
acceleration for subsequent integration of other blocks.

An important consideration for the SoC integration team is when to move
to a pure signal-level, top-level interconnect. The final SoC implementation
will have a pure signal-level top level, which is usually provided by either the
physical design team or the system design-in team. These top levels can con-
sist of tens of thousands of individual signals for large SoCs. The only time
these top levels are verified is with the final integration, so it is imperative
that the SoC team provides an efficient method for this verification. The SoC
team should move to the physical signal-level top-level interconnect as soon
as possible after the transaction-level FVP has been verified. This might mean
keeping two top-level interconnect models in sync for a period of time during

Chapter 11: Chapter/Appendix Title 109

the transfer. The signal-level top level is also necessary, since it is common
for many side-band signals to appear between implementation blocks that are
not necessary in the transaction level.

The SoC team makes the integration process smoother by verifying the
physical signal-level top level with the transaction models as shown in Figure
41. In this example, transactors are placed at the interfaces of each model, and
interface monitors are converted to signal level and placed between pairs of
transactors. The test suite is then rerun to verify the signal-level top level. The
transactors and interface monitors, which will be reused by the subsystem
teams, are also verified in this configuration.

Simulation Acceleration

Hardware-based verification provides several modes of simulation accel-
eration, with varying levels of performance improvement over simulation
alone. The first mode is accelerated co-simulation, which is the easiest mode
to implement. With accelerated co-simulation, also known as lock-step co-
simulation, engineers compile and download their design on a dedicated hard-
ware verification engine while leaving their behavioral or C++ testbench in
the simulation environment. With the simulator or C-testbench within the
workstation communicating in lock-step fashion with the design in the accel-
erator, simulation performance is increased from two to ten times faster than
traditional software simulation. This is primarily because the bottleneck—the
workstation—is now only responsible for a fraction of the total simulation
load—the testbench.

Lock-step co-simulation is easiest to implement because it involves little
change to the simulation environment. In most cases, the design is simply
split into two pieces: the behavioral portion, which is generally the testbench,
remains on the workstation, while the synthesizable portion, along with mem-
ory constructs, are loaded onto the accelerator. Beyond this, little or no
change is made to the environment, which allows for fast implementation.
This approach has some drawbacks, which are primarily caused by the fact

110 Professional Verification

that most testbenches include hundreds of signals that must communicate
with the design on a clock-by-clock basis and, in many instances, several
times per clock. This high level of communication limits the overall perfor-
mance of the co-simulation environment, since the hardware system, which is
able to execute the design many thousand times faster than the simulator can
execute the testbench, must wait after each and every clock tick for the test-
bench to complete its execution.

The next level in performance is accelerated, transaction-based co-simula-
tion mode, which can be one hundred to one thousand times faster than
traditional simulation. This is a new mode that overcomes many of the limita-
tions introduced by the relatively slow workstation. Rather than
communicating on a clock-by-clock basis, a transactional testbench intro-
duces a high-level protocol for communication between the workstation and
the accelerator. This protocol, in combination with a specialized, low-latency
I/O channel, allows data and commands to be sent between the simulator and
accelerator at high speed and in parallel. Once the data and high-level com-
mand are received by the accelerator, it is free to stimulate the design at full
speed, and only needs to communicate with the workstation once the given
task is complete. The implementation of transaction-based co-simulation
requires that a small portion of the testbench, known as a transactor, be syn-
thesizable. For many design environments, the small amount of additional
work to create the synthesizable transactor is well worth the substantial
improvement in overall co-simulation performance. Even with transaction-
based co-simulation, the testbench remains a bottleneck to overall
performance.

Hardware’s fastest mode—synthesizable testbench mode—is a hundred
times faster than accelerated co-simulation, boosting simulation run-time per-
formance by up to one hundred thousand times. This high level of
performance is achieved by eliminating the workstation all together by load-
ing the entire testbench onto the accelerator along with the design. Without
the workstation as a bottleneck, the overall verification performance is maxi-
mized and runs at the same speed as in-circuit emulation—typically 300k to
750kHz. Though this mode delivers the fastest performance, it does require
that users supply a synthesizable testbench, which takes additional effort.
Some users, like those designing CPUs and networking chips, find this worth-
while, since it delivers the ultimate level of performance. Many customers
initially implement lock-step co-simulation for their first accelerated project
and later move to transaction-based co-simulation, synthesizable testbench
acceleration, or both.

Chapter 11: Chapter/Appendix Title 111

Order of Integration

The order of integration depends on the design and the delivery time of
each piece. If the design contains analog connected to a digital signal proces-
sor (DSP) block, with the DSP block connected to a control-based digital
block, the analog and DSP blocks are verified first, and then verified with the
control-based digital. If the design contains analog blocks directly connected
to control-based digital along with algorithmic-based digital, the control-
based digital is integrated first with the analog independently, and then with
the algorithmic-based digital independently. When these two integrations
have been verified, the system as a whole is verified.

SYSTEM VERIFICATION

The goal of the system verification phase is to verify the system under
real-world operating conditions. The UVM utilizes system verification for
several roles. First, to verify that the testbench environment used to stimulate
and check the implementation has accurately reflected the system. It also pro-
vides a mechanism for hardware-software co-verification in a realistic
environment. Up this point, software development has been done on a model
or Instruction Set Simulator (ISS) attached to the FVP or an implementation
model using only basic software debug tools. In system verification, software
is run either on the actual CPU or a mapped version of the CPU utilizing all
the software debug tools available in a real-world environment. System verifi-
cation is also used as a design chain handoff mechanism, allowing early
access of the implementation to design chain partners.

Three basic types of system verification methods are used in the UVM:
software-based simulation, hardware prototype, and emulation. Which
method to use depends on the application and the skill set of the team. Soft-
ware simulation works well for smaller designs that do not need to run at fast
speed for long periods of time. Setup and conversion to software simulation
methods is straightforward. FPGA development platforms work well for
modular designs such as SoCs. However, setup and conversion can be cum-
bersome for someone not experienced with FPGA development and
partitioning. The FPGA solution can run much closer to the speeds of the sys-
tem, but it provides only limited visibility to help debug any problems
encountered. Emulation systems work well for large designs that do not need
to run at full speeds, but do need to be accelerated much faster than simula-
tion. Emulation systems interface well to external devices and provide
excellent visibility and support for debugging design issues.

112 Professional Verification

The UVM speeds up system verification in several ways. Reusing models
and testbench elements shortens development time. Reusing transaction-
based models and interfaces improves the speed of the system, thereby
decreasing test time. Reusing assertions and using a common user interface
from the implementation stages speeds debugging. Finally, the hardening pro-
cess of digital subsystems decreases the time to working emulation or
prototype.

Software-based Simulation

Software-based system verification provides the greatest amount of
observability and the smallest modification time of the three methods. How-
ever, performance can limit the amount of verification performed. The first
step is modifying the testbench. The implementation is now controlled and
monitored by the actual external environment. The testbench is modified to
remove stimulus generators. Response checkers are modified to become pas-
sive monitors for debugging. Hardware-dependent software must be loaded
into the processor model in the simulation or controlled through an instruction
set simulator. If the system contains mixed-signal subsystems, such as algo-
rithmic digital or analog subsystems, they are either modeled in a higher level
of abstraction for simulation, such as a TLM, or black-boxed and ignored.

Stimulus can be provided in several different ways:

Interfacing to test equipment and capturing the stimulus for playback
on the implementation

Using API interfaces to the simulator to receive and drive data to and
from a workstation or network

A model or TLM that mimics the real-world stimulus

The output of the system is verified through comparison and analysis. It
can be compared for accuracy to an existing system or the FVP. Analysis can
verify user interfaces and performance requirements.

Advanced verification techniques continue to be used throughout system
verification. All the assertions defined at the architectural, interface, and
structural levels are reused to aid debugging and detecting errors found with
the new stimulus. Architectural-level coverage goals can be reverified to
ensure that stimulus is working correctly, but lower level coverage monitor-
ing is not used. Transaction-level interfaces provide the same debugging
environments used in subsystem development and integration. Acceleration
increases the simulation speed of the design in a similar manner as with sys-
tem integration.

Chapter 11: Chapter/Appendix Title 113

Hardware Prototypes

Hardware prototypes are hardware systems built to replicate the real sys-
tem environment using programmable hardware, such as FPGAs, to represent
the implementation. Hardware prototypes might provide the most high-per-
formance solution for system verification, but also require the most work. The
process begins with developing the prototype system. In most cases, the pro-
totype system must be built or modified for system verification use. The
prototype system requires a tested board with standard interface components,
along with observation interfaces. The digital implementation is placed in
programmable hardware. The analog and mixed-signal subsystems are imple-
mented on the board.

Once the system is built and debugged, the design is compiled into pro-
grammable hardware devices, and system clock speeds are chosen to meet the
timing of the compiled implementation. The subsystem teams might have
already verified that the blocks map correctly into programmable hardware as
part of the block-hardening process. Stimulus is provided through the proto-
type system board and can be driven through test equipment, external
workstations, or networks. Software loading and debugging are done in the
same manner as the real system. Service processors can be used to boot the
system, and software debuggers connected through JTAG interfaces can be
used to debug the software. The response checking is done in a manner simi-
lar to the real system. Response to the stimulus can be captured for analysis
by test equipment, or the application can be tested to the user requirements.

Advanced verification techniques are not commonly used with hardware
prototypes. Assertions and coverage monitors do not map easily or have a
common interface to standard programmable hardware devices. Hardware
prototypes can be replicated for design chain partners, providing early access
to the implementation-level FVP. This requires a great deal of up-front plan-
ning and back-end support.

Emulation

In-circuit emulation provides the highest run-time performance for regres-
sion testing, hardware-software co-verification, and system-level verification.
In-circuit emulation replaces the testbench with physical hardware, which is
typically the system for which the IC is being designed. Working at the sys-
tem level, in-circuit emulation verifies the IC as it interacts with the system,
which includes system firmware and software. Rather than using testbench-
generated stimulus, which is often limited in scope, in-circuit emulation is
able to use live data generated in a real-world environment. Data generated at
high speed, using industry-standard test equipment, is also available with in-

114 Professional Verification

circuit emulation. In many cases, the last handful of corner-case bugs, which
if undetected would result in costly chip respins, can only be discovered
through the interaction of the IC in the context of the system, with software,
firmware, and live data.

In-circuit emulation also bridges the debug environment between simula-
tion and physical hardware. Even when running in-circuit with a live target
system, emulation provides a comprehensive debug environment with full
visibility into the design being emulated. Combined with very fast compile
times (typically 4 million IC gates per hour on a single workstation), in-circuit
emulation becomes similar to simulation, where bugs can be found quickly,
fixed, and recompiled, often in less than an hour.

Several different applications of in-circuit emulation are available. Two of
the most commonly used include vector regression and hardware/software co-
verification. Using the emulation system in vector regression mode enables
users to run their sign-off suite of vectors at high speeds, which is valuable for
final certification of any design before tapeout. With vector regression mode,
test vectors are loaded onto the emulator along with the design. These vectors
are then used to stimulate the design, with the output vectors being captured.
For long regression tests or suites of tests, additional vectors can be loaded
onto the emulator as the previously loaded set of vectors is executed. Like-
wise, results from the previous set of test vectors are off-loaded and stored on
disk as the current set of results is captured. This ability to load and unload
one test while another test is executing maximizes throughput of the emulator.

To create a chip tester-like environment, an emulator can optionally com-
pare the vector test results with “golden result vectors” on-the-fly and report
pass/fail results. For failed tests, which can be debugged later, vector mis-
matches are highlighted in the waveform display browser. With vector
regression mode, the emulator can be kept constantly testing designs, which
dramatically reduces the time required to complete a large test or entire
regression suite, often from weeks to hours.

Hardware-software co-verification is a powerful option to in-circuit emu-
lation that can dramatically reduce the verification time and development time
of today’s designs. By providing a functional system environment, an in-cir-
cuit emulation system can be used to develop system-level software, even as
the IC design is being verified. By developing software in parallel with hard-
ware, not only is the development schedule effectively compressed, but the
system-level software becomes available as an additional verification tool for
the hardware, which provides another means to uncover deeply hidden bugs.
By testing software while the hardware is still being developed, changes can
be made in the hardware design before tapeout to yield optimal solutions.

Chapter 11: Chapter/Appendix Title 115

To provide a familiar software development environment, both hard- and
soft-IP can be interfaced to any microprocessor ICE or RTOS debugger for
early software validation and debug of an emulated design. Soft-IP can be
modeled within the verification system along with the IC, while hard IP can
be interfaced to the system using the in-circuit interfacing logic.

For interfacing an emulated design to devices that are speed sensitive,
there are a variety of specialized verification environments. These environ-
ments can be used to interface an emulated design with full-speed interfaces,
such as Ethernet, audio, video, PCI/X, and 3G wireless. These sources of live
data enable the verification of hardware/software interactions in real-world
environments.

By moving from the context of the IC to the context of the system, emula-
tion delivers the ability and performance required to boot operating systems,
develop and test device firmware and drivers, and even interact with running
applications, all while providing a fully featured debug environment.

This page intentionally left blank

SECTION 3
TOOLS OF THE TRADE

This page intentionally left blank

Chapter 12

System-Level Design
System modeling, software, and abstraction

Early system modeling and verification are the cornerstone of a modern
unified verification methodology. Earlier we introduced the FVP and showed
how it can unify a verification methodology to improve speed and efficiency.
An FVP is one example of a system model that has been used for many years
to assist in system design, system verification, and software development
tasks. In this chapter, we will look at the issues that can be addressed with an
FVP and how software development and functional verification can be uni-
fied in a methodology. We will also address the important topics of design
and verification abstraction.

ISSUES ADDRESSED WITH AN FVP

The system model addresses many of the most difficult issues verification
teams face today. One of the most important issues is incomplete or incorrect
communication of architectural and design information. Architecture and
design information passes among groups or engineers in many ways. The
most commonly used format is a written specification but, unfortunately, it
often lacks all the necessary information, has ambiguous information, or
might not be kept up as changes occur. These deficiencies often lead to bugs
being introduced into the design and slipping through the verification process.

A system model can address these communication problems because
when it returns a non-ambiguous result to specific stimulus, it creates an exe-
cutable specification. The architects or system designers can specify and
verify the exact operation of the system in a system model. This system model
can then be provided to implementation, integration, and verification teams.
Each of these teams designs or verifies their part of the system to meet the
operation of the system model. Verification can compare the response of the
implementation to the response of the system model. If the responses do not
match, either the design is in error or the specification is incorrect. Either
way, bugs are identified and resolved faster using the system model as an exe-
cutable specification.

Some bugs found during the verification process are not due to the imple-
mentation of the design but are in the original architecture. These bugs can
result from incorrect assumptions made by the architects or system designers

120 Professional Verification

and often require large portions of the design to be redesigned. Finding these
architectural bugs as soon as possible limits the amount of rework by design-
ers and verification. The system model can help find bugs that have slipped
through the verification process, and it can help find bugs sooner. Developing
a system model early in the development process allows the verification team
to verify the architecture and system design before implementation begins.
Verifying the system model early identifies bugs sooner than waiting for the
implementation to be completed. Correcting these bugs early saves imple-
mentation and verification time and resources.

In addition to finding bugs, verification teams face efficiency and produc-
tivity issues. Many development teams view design and verification as serial
processes. They believe that verification does not begin until the implementa-
tion has been completed, because you need to have something to test before
you can begin testing. Many verification tasks, such as testbench development
and test writing, can be done in parallel with the development of the imple-
mentation, but the verification engineers cannot test or debug their testbench
or tests until the design is made available. When a system model is available,
it can be used to test the verification environment and to develop and debug
the verification tests and infrastructure before the implementation is com-
pleted. This means that once the design is made available time is not lost
integrating, debugging, and bringing up the verification environment. This
can dramatically improve the verification schedule and spread the number of
resources more evenly.

The system model can also be reused as part of the verification environ-
ment, thereby saving testbench development time. A large portion of the
development in most testbenches is checking the response of the design to
stimulus and determining whether it is correct. If the system model is devel-
oped as an executable specification, the system model can be used to predict
the correct response for the design. This saves time in developing testbench
components. The system model can also be used as a verification environ-
ment. If the system model is partitioned correctly, it might be possible to
replace parts of the model with the actual implementation and reverify the
model. Verifying parts in this manner can facilitate reusing the system-level
tests to verify the operation of the part within the context of the entire system.
This reduces the amount of tests that need to be written.

If the design is part of a design chain, the design customer might need
access to the design early in the development process. The verification team is
often required to provide this prototype. Many teams deliver an implementa-
tion-level model or a prototype in the form of an FPGA. Instead, a system
model of the implementation can be delivered earlier in the design process
and in a more useable format for the customer. The customer might still

Chapter 12: System-Level Design 121

require a more detailed prototype later in the process, but the system model
can satisfy them until it is available.

VERIFICATION AND SOFTWARE DEVELOPMENT

Throughout this book we have spoken of the connection between func-
tional verification and software development. Unifying these two domains
could provide great strides in improving the speed and efficiency of the devel-
opment process. While striving to unify system models and development
environments is noble, it is important to realize the uniqueness of the individ-
ual tasks of functional verification and software development. These domains
have different goals and utilize different processes. Attempting to develop
one environment and set of processes for verification and software develop-
ment would in many ways be counter to the culture of each group and result in
an overall loss in the project’s speed and efficiency.

Instead of focusing on unifying to a common environment, teams should
focus on unifying the connection points between software development and
functional verification. This allows each team to follow their own best prac-
tices while utilizing common deliverables. In this section, we will discuss the
connection between functional verification and software development from
the perspective of the functional verification engineer.

Advanced functional verification teams have two major concerns regard-
ing software environments: how do you provide a common model that
software can use, and how do you utilize a software environment in the verifi-
cation process. In many cases, the software team is viewed as a customer for
the functional verification team. The functional verification team must pro-
vide the software developers with an environment that allows them to develop
and test their software before silicon is available.

The functional verification team should focus on delivering a fast, accu-
rate, and flexible model of the design for the software team to use. The model
must be fast enough for software developers to test code sequences that con-
sume millions of cycles of simulation while providing response times suitable
for interactive development and testing. The model must accurately reflect the
implementation, including accurate memory maps and register definitions, it
should provide realistic responses to software operations, and must be flexible
enough to evolve as the implementation evolves. At first, a TLM may be suit-
able, then followed by various parts modeled in HDLs, and then possibly a
hardware-accelerated model. The model and environment must meet the
needs of the software team while providing enough visibility to allow for
hardware debug should functional errors be found.

122 Professional Verification

Using the System Software Environment for Verification

When using the system software environment to verify a design, the main
goals should be to verify the intended implementation, verify the integration
of software and hardware, and provide a realistic software environment. The
environment should be able to stimulate and verify the implementation in
much the same way as a traditional testbench, without developing the test-
bench infrastructure and tests. The environment should verify that the
implementation in coordination with the intended software is operating cor-
rect. Finally, the environment should provide a real-world environment that
verifies the design under similar conditions that it will face in normal
operation.

Utilizing software environments for functionally verifying the design can
be a fast and efficient solution, but it also has its drawbacks. A software-based
environment provides fast and easy stimulus generation, but the stimulus can
be difficult to control. Software usually uses a small subset of the functional-
ity and does not stress important corner cases where bugs are often found.
Even when stimulus can be precisely controlled, bugs can be missed due to a
lack of adequate checking. Software environments lack visibility and often
rely on register read-backs or memory compares to verify correct operation.
Bugs that do not easily propagate to these checks can easily be missed. When
detected, bugs can be difficult to find in software environments due to the
lack of visibility.

Given the number of goals and caveats for using a system software envi-
ronment for functional verification, it is not surprising that the teams doing
this and the degree to which they do it is highly dependent on the application.
Basic control systems that operate over a small range of variability can most
fully utilize a software environment for functional verification. Complex cus-
tom hardware applications that rely on software for initialization, error
handling, and background services tend to rely more on traditional test-
benches and use software environments only at integration and final test.
There are three basic types of applications that utilize software in the func-
tional verification process.

Microcode Engines

Many systems utilize a microcode engine to provide some flexibility while
maintaining custom hardware speeds. Graphics engines and network applica-
tions may implement protocols or algorithms in custom microcode and
develop custom engines to process the limited instruction set. Verification of
these engines must focus on verifying both the engine and the software. Veri-
fication is made easier because of the limited instruction set and limited

Chapter 12: System-Level Design 123

number of applications. Unfortunately, the software is often not available
when the system is being verified. In many cases, the engine must be verified
to correctly run microcode that will not be written until after the silicon has
shipped to a customer.

Verification teams can use random code generators to verify these types of
systems. These generators create code snippets that can be loaded into the
engine and run. Usually, the generation must be tightly constrained to allow
only valid code snippets. Software environments allow microcode engines to
verify both the hardware and the integration of software.

Hardware Platforms

Hardware platforms provide a configurable environment for a wide range
of possible system applications. These platforms are implemented as SoCs
with one or more standard processors, memory, and basic application inter-
face units, all connected to a standard common bus structure. These systems
often use a standard preverified processor, so verification is focused on sys-
tem integration and any new hardware blocks that may interface to the
processor. The software that runs on hardware platforms has multiple layers,
including low-level drivers, operating systems, and applications. The soft-

124 Professional Verification

ware is usually readily available, and verification only needs to focus at the
device driver layer.

To verify these platforms, the processor is replaced with a bus functional
model (BFM) or an ISS to improve simulation speed and provide the neces-
sary visibility and control. Final verification is usually done with an
implementation model of the processor to verify interconnect and integration.
Advance verification teams utilize software environments for the verification
of hardware platform SoCs to verify standard interfaces and configurability.

Software Algorithms

An algorithm can be implemented in hardware by converting it to a cus-
tom implementation or by running it on a standard processor. The algorithm is
first developed and verified in its software form in an environment such as an
FVP. Functional verification is left to verify the final implementation of the
algorithm and the interface to the system. If the algorithm is implemented
with custom hardware for speed or size reasons, verification focuses on veri-
fying the conversion from algorithm to RTL or gates and the correct interface
to the rest of the system. The verification team can utilize the original soft-
ware algorithm as a reference model. Random or directed stimulus can be
applied to the implementation and the software algorithm in parallel, and
responses can be compared. The quality of checking is determined by the
fidelity of the original software algorithm to the hardware implementation.

If the model is cycle-accurate to the implementation, detailed checking
can be done. If the model is untimed or behavioral, the checking can be more
difficult and less accurate. If the algorithm is implemented by running the

Chapter 12: System-Level Design 125

software algorithm on a standard processor, the focus of the verification is on
integrating the processor into the system. This verification is similar to the
hardware platform discussed earlier. Verification is accomplished with the
use of a BFM or ISS to speed simulation and provide control and visibility.
Final verification should be done with the implementation model of the pro-
cessor running the software algorithm.

ABSTRACTION

When you abstract information from an object, you take only the informa-
tion that is relevant to your purpose and remove the rest of the details.
Removing the details that are not important allows you to represent and ana-
lyze larger and more complex amounts of information. Abstracting
information does not make that information less accurate. Many people
believe that the more abstract a piece of information is the less accurate it is.
Accuracy measures the correctness of the information. Information as it is
abstracted must remain accurate. Fidelity measures how closely the informa-
tion represents the original details. The fidelity of the information decreases
as information is abstracted, but the accuracy must not.

Design Abstraction

Abstraction has made the design of complex electronic systems possible
and can be beneficial in the verification of these same systems. At the most
basic level, an electronic design is simply the flow of electrons through differ-
ent physical materials. The most basic representation of a electronic system is
the description of the physical materials, along with the charges applied to the
materials. This level of detail was sufficient for describing very small primi-
tive electronic behaviors. As designers wanted to represent more complex
circuits, they needed to abstract the information from the circuit that was most
relevant to the design. In this case, designers abstracted from the physical lay-
out details the functional components that these details represented. The
designer could then design using components such as transistors, resistors,
and diodes. The facilitator for moving to this higher level of abstraction was
the development of circuit simulators, such as SPICE, along with the associ-
ated libraries and netlisting facilities. These automation tools allowed
designers to represent and analyze their designs at the component level, often
referred to as the transistor level.

As designs became larger and more complex, designers again needed to
move to a higher level of abstraction to more efficiently represent and analyze
their designs. They abstracted from the component details of transistors and

126 Professional Verification

diodes to the Boolean gate level. This allowed the designers to simply specify
the Boolean gate types that are created from various components. The facilita-
tors for this were schematic capture, Boolean optimization, and analysis tools.
Once again this level of abstraction worked well until the size and complexity
of the designs outgrew the effectiveness of this level.

The next level of abstraction was not as easy to define as the standard
component or Boolean gate level. The next level needed to represent the
behavioral characteristics of the design in a more efficient manner, but there
was not an established standard for this representation. For several years dif-
ferent design teams used different behavioral descriptions for this next
abstraction level. These different and incompatible levels of reference made it
difficult for tool development to facilitate a large move to one level. The facil-
itator became logic synthesis based on an industry standard description
language called Verilog. This resulting level abstracted the functional repre-
sentation of synchronous designs from the logic gates by specifying the
functional operation between clock cycles or registers. This level became
known as RTL. Most designs today are written at RTL, which is then trans-
lated to the logic gate level by logic synthesis, which maps to gate libraries
specifying component-level detail, and finally to the layout level of detail.

Many attempts have been made to again raise the level of abstraction.
Some success has been made in representing designs at an algorithmic or
behavioral level, but the loss of detail in moving to this level has resulted in
less optimized designs. At some point, the demand for larger and more com-
plex systems, along with design automation tool breakthroughs, will move the
design representation once again to a higher level of abstraction. Most experts
today feel that the physical design and functional verification of today’s

Chapter 12: System-Level Design 127

designs must improve before design size and complexity grows to the break-
ing point.

Verification Abstraction

Verifying electronic systems has always followed the lead of design in
representing and abstracting information. At the physical or transistor level,
the generation of stimulus is quite simple in spanning the operating region.
The fabrication process, temperature, and frequency are the important simula-
tion parameters to test over the operating region. Analysis at this level is
focused more on AC and transient effects than on functional behavior. At the
gate level, Boolean verification could often be done by brute force applying
test vectors to cover all possible test cases. Once designers moved to RTL,
there was a need for more complex testbenches with stimulus generation and
response checking. These testbenches were written in the same register trans-
fer language used for system design. As RTL designs became more complex,
RTL became more cumbersome for developing complex testbenches. The
need for improved verification efficiency was first addressed with specific
verification languages, which added optimizations for coding and data repre-
sentation to RTL. These languages suffered in performance, because they
were still tied to RTL and were fragmented due to the inability to standardize
on one language.

Advanced verification teams have come to realize that verifying today’s
large complex systems requires moving to a higher level of abstraction. They
cannot wait for designs to lead the way to the next abstraction level. RTL is
sufficient for verifying low-level details, such as signaling of protocols and
handshakes at interfaces, but it is not sufficient for representing the algo-

128 Professional Verification

rithms, data structures, and data flows within a complex system. Advanced
verification teams have begun to move to the transaction level of abstraction,
which removes the low-level signaling details and represents the algorithms
and data flows in a more efficient manner. Removing this level of detail
makes definition easier, simulations faster, and allows teams to begin before
all the low-level details have been defined. The transaction level still retains
the implementation-specific information necessary for verification and facili-
tates the refinement of this information as the design develops. Moving to an
even higher level, such as a pure behavioral level of abstraction, would
remove necessary information for verification.

Currently, the definition of the transaction level suffers from the same lack
of clarity that RTL did before logic synthesis was introduced. Many teams are
working at the transaction level, but they each have slightly different defini-
tions of what level of detail is needed. Some teams specify the transaction
level to the cycle boundary, where the information at each clock cycle is accu-
rate to RTL. This cycle-accurate definition is only slightly higher than RTL
and might be the next step for design, but in most cases, it is still too low a
level for verification. Other teams only specify the behavior of the design and
include only the most basic forms of timing and synchronization information.
The driver for RTL was the move to a common logic synthesis tool—teams
understood that it was in their best interest to converge on a single accepted
representation. The driver for the definition of the transaction level will be
driven by verification and more specifically the testbench. The industry will
converge on a single representation of the transaction level to facilitate the
development, transfer, and reuse of models and testbench components,
because it is for the common good of all. Teams today have settled on defini-
tions of the transaction level. This definition has allowed these teams to
define interfaces between testbenches, models, and tools. The infrastructure
for verification is built around this definition. As the different definitions con-

Chapter 12: System-Level Design 129

verge into one, the industry will be able to leverage this infrastructure and
optimize efficiency.

Transaction-Level Modeling

The reason we have included this discussion of abstraction is that the sys-
tem model should be written at the transaction level of abstraction. The
system model should be started early in the development process before all
the implementation details are available. The transaction level allows the def-
inition of the model with basic implementation information and the
refinement of the model as information becomes defined. Users of the system
model require faster simulation speeds than available in RT models and can-
not wait for the RT model to be completed. The transaction-level system
model can be developed before the implementation is started, and can be sim-
ulated much faster as the low-level details are removed. Finally, developing
the system model at the transaction level facilitates its use in the verification
environment. Using a standard transaction-level definition, the testbench can
interface directly to the system model to do early architectural testing and
facilitate developing and testing of the verification environment.

A TLM abstracts the functional and data flow information from the
design, removing the low-level signaling information. The functional or algo-
rithmic information in the design is represented in the simplest manner. The
model does not care about the implementation specifics within the function.
The model focuses on the correct functional operation and the interface
between different functions. A TLM uses a common representation of transfer
of information between functions. This representation of data, and the transfer
between functions or blocks, is often defined as a transaction. A transaction

130 Professional Verification

abstracts all the low-level signaling and handshaking information in the
exchange of information between functions in a design and represents the data
in a data structure with associated transfer information, such as the number of
clock cycles the transfer will take. Thus, a TLM is made up of behaviorally
defined functions interfaced together using a common transaction interface.

One way to think of the TLM is as a high-level function wrapped in an
interface layer, which provides the transaction interface. As the function is
decomposed down to smaller functions for implementation refinement, each
sub-function is again wrapped within a transaction interface. Using the trans-
action interface facilitates easy replacement of functions, easy interface to
analysis tools, and easy interface to verification or testbench components. A
TLM can be written in an RT design language, but remember that the infra-
structure and interface to that language will still be tied to RTL, so
performance may suffer. The easiest language for defining functions as well
as architecture analysis and software interfacing is usually a language based
on C or an object-oriented language like C++. The industry has developed
modeling and verification extensions to the C++ language called SystemC.
Many companies are developing a common transaction level infrastructure
using the SystemC extensions. The process and semantics of writing a trans-
action level system model in SystemC are quite complex. There are several
excellent texts that focus on the mechanics of creating a SystemC TLM.

Formal Verification Tools
Understanding their strengths and limitations

There has always been a great deal of confusion when discussing the topic
of formal functional verification. Formal verification uses mathematical tech-
niques to prove that a design is functionally correct. These mathematical
techniques are steeped in theory and mathematical sciences that go beyond
the comprehension of most verification engineers. The complexity of the
underlying technology leads to much of the confusion when discussing formal
verification. Rather than focus on the underlying technology, in this chapter
we will look at using formal verification tools to address functional verifica-
tion issues that advanced teams face today. We will also examine the
limitations of these tools and techniques. As with all techniques, it is impor-
tant for each verification team to measure the time and effort involved against
the return received as well as whether the strengths outweigh the limitations.

The original intent of formal verification was to address simulation’s
inability to cover all the possible test cases or state space in a design. This is
still a large issue today, and formal verification is continuing to attempt to
address it. But until this issue is addressed, the best use of formal verification
is for smaller, more practical issues, such as locating basic bugs.

Formal verification can find the easy implementation bugs quickly so
more time and effort can be applied to more difficult verification tasks. Static
analysis tools, also called linting tools, use formal techniques to identify basic
bugs without requiring a testbench or test stimulus to be developed.

Formal verification is also used to reverify a design when changes occur.
Synthesis tools are commonly used in the development process to synthesize
a gate-level netlist from an RTL representation. Assuring that this automated
process worked correctly is important, since the verification typically occurs
only on the RTL. The design often changes due to implementation changes,
such as adding a clock tree or scan test logic. Some teams attempt to repeat
the verification at the gate level, but the decrease in abstraction level results in
performance degradation. Repeating the entire test suite at the gate level
might not be possible in the time available.

Chapter 13

WHEN TO USE FORMAL VERIFICATION

To address this, formal verification uses mathematical techniques to com-
pare the original representation to the new representation. These tools, known
as equivalency checkers, break the design down into mathematical represen-
tation and then formally prove that the two are equivalent. Equivalency
checkers can verify that two representations of a design, such as RTL and gate
level or gate level and transistor level, are functionally equivalent. So once the
verification is done at one level, it does not have to be repeated at the other
level. You can also use equivalency checking to verify that the change made
to a design only affects the intended functionality and does not have other
functional implications.

Difficult bugs are often not found with traditional simulation approaches.
Large complex designs have a huge state space, which can be impossible to
cover with simulation. Teams might employ random stimulus simulation
techniques to cover as much of the state space as possible, but these tech-
niques are random and tend to take the path of least resistance. If a bug exists
outside of the covered state space, it will most likely not be found until the
design is in silicon.

While formal verification tools might lack the capacity to cover the state
space of a large design, it can thoroughly cover selected important areas that
are difficult to test with simulation, such as an arbiter or a complex queuing
scheme. Formal model checking tools cover these areas of the state space by
focusing on only certain parts of the design. Semi-formal or hybrid formal
verification tools use simulation to lead the tool to interesting places in the
state space and then thoroughly verify around that area. These approaches
allow verification teams to focus on the hard to simulate areas where difficult
bugs are found.

Design and verification teams have used lint tools for many years. RTL
analysis tools take the design RTL as input and analyze the code for bugs,
without a testbench or specification of properties. These tools use a variety of
methods for performing this analysis, including formal techniques.

132 Professional Verification

FORMAL VERIFICATION TECHNIQUES

RTL Analysis (Linting)

Advanced verification teams have learned the advantages and disadvan-
tages of using formal verification tools by dedicating large amounts of time
and effort to them. These teams have learned where the time and effort has
paid off and where it has been wasted.

The major deficiency in most RTL analysis tools is the trade-off that must
be made between accuracy of the check and the chance of incorrect errors
being reported. These tools cannot infer all the information necessary to abso-
lutely guarantee that the issues found are real bugs. If the tools follow the
strict coding of the check, they might report many issues to the designer that
turn out to be correct design characteristics. If the tools try to limit the check-
ing or infer more information than is really available, they risk missing a bug
and giving the user a false sense of security. It is this trade-off that has moved
RTL analysis tools to more complex methods to find real bugs with fewer
false errors.

The simplest form of RTL analysis tools parse the code and identify issues
from the textual representation of the design. These tools can find typographic
and syntax errors that might result in incorrect connections or missing logic.
Unfortunately, simply parsing the text does not provide enough information
to detect more complex bugs without the risk of reporting many false viola-
tions. Early tools that focused only on the text were infamous for reporting
thousands of violations that were not real errors. To overcome these false vio-
lations, RTL analysis tools began to translate or elaborate the design into a
Boolean or mathematical format so that more complex information could be
inferred. This information can help identify cases that can be logically proven
to be correct or incorrect. An example of this is a net being driven by a tri-
state device. By breaking that circuit down into its Boolean-level representa-
tion, the tool might be able to identify that it is logically impossible for the
two drivers to be on at the same time, thus it would not report that as a false
violation.

Elaborating the design can identify some information to provide more
checks and limit the amount of false violations, but it still does not provide a
complete solution. Many checks require a more complex mathematical analy-
sis to prove the design meets the expected behavior. The latest generation of
tools uses formal techniques to prove that certain complex bugs are real.
These checks verify complex relations, such as deadlocks, clock domains
crossings, and reachability.

Figure 47 shows a simple circuit with two different clock domains. A pos-
sible race condition occurs between register A and register B because it lacks

Chapter 13: Formal Verification Tools 133

134 Professional Verification

the synchronization registers that exist in the path between register A and reg-
ister E. Detecting this race condition is almost impossible using simulation,
but an RTL analysis tool can easily identify this violation.

Quite often the inability to determine whether a violation is correct is due
to the inability to determine the behavior of design inputs. Tools might report
that a violation will occur if a design input behaves in a particular manner.
The designer looks at the violation and realizes that the input will never
behave in that manner, so the violation is false. The only way these false vio-
lations can be removed is by providing more information on the correct
behavior of the inputs. Many of the newer tools let the user specify properties
or assertions at the inputs of the design. These assertions constrain the tools to
only identify violations that occur without violating the properties or asser-
tions specified at the inputs. Providing this information requires additional
work, but offers the benefit of analyzing fewer false violations. This still does
not guarantee that the tools will find all bugs. In many cases, the logic is too
complicated due to size or state space, so the tool cannot prove that the check
is correct. In these situations, the tool notifies the user that the check was
inconclusive and that it should be promoted to simulation.

Most advanced verification teams use an RTL analysis tool, but differ on
how they use it and how much they rely on it as a part of their methodology.
The trade-off usually breaks down between the amount of time and effort
spent on running and analyzing the results and the amount of bugs or design
errors found. Different teams have different thresholds for time spent with an
analysis tool versus simulation. This threshold often reflects the discipline or
structure of the team and its management. Teams that are very regimented
with disciplined and metric-oriented managers tend to use RTL analysis more
than more open and relaxed teams.

There are three basic use models for RTL analysis tools:

The designer or verification engineer takes each block of code as it is
written and runs it through the analysis tool before simulation begins.

This removes easy bugs and assures quality code before it enters the
verification process.

Teams run the tools every time a design change is made to verify that
the changes have not caused a new violation.

Teams run the tools as a final verification before code is signed off.
This may be part of a formal code review process.

Advanced verification teams have learned to use RTL analysis tools
in the context of their entire methodology. The following lessons
learned from these groups can be valuable to any team using RTL
analysis tools:

Understand what you want to achieve and know the types of bugs that
you want to find and that are important to you. If you do not do this
analysis first, you might waste lots of time investigating violations
that are of little value to you.

Understand what the checks are really verifying. Quite often two
tools use the same name for a check, such as clock domain crossing
checks, but what they check is very different. You can fool yourself
into thinking that you have verified an aspect of your design that is
not fully checked.

Set up defined rules and processes for using the tools, such as when is
the tool run and what results are considered acceptable. Many teams
add their own checks to the tools to verify their own design style
requirements.

Chapter 13: Formal Verification Tools 135

Equivalency Checking

Equivalency checking is not always thought of as a functional verification
technique, because it is mostly used during the implementation or back-end
stage of the development process. Equivalency checking compares two repre-
sentations of a design to verify that they are functionally correct. Functional
equivalency means that the two representations are logically equivalent. If
you apply the same stimulus to the two designs, you will get equivalent func-
tional responses. Equivalency checkers break the design representations down
to a basic mathematical representation and then use formal techniques to
prove that the representations are equivalent.

The original promise of equivalency checkers was that they could provide
the verification link between high-level behavioral representations developed
by architects and the low-level implementation representations developed by
designers and automated tools. Unfortunately, the higher in abstraction a
design is modeled, the more ambiguous the representation can be. Verifying

the functional equivalency of two ambiguous models or an ambiguous model
and a detailed model is very difficult. Thus, the promise of verifying an archi-
tectural or behavioral model to the final implementation is still unrealized.

Verifying the equivalency of models at high levels of abstraction might be
difficult today, but verifying the equivalency of more detailed implementa-
tion-level representations is possible. Equivalency checkers are being used
today to verify the equivalency of designs represented at synthesizable RTL,
the Boolean gate level, and the transistor level. Equivalency checkers are used
to verify that the gate-level representation produced by a logic synthesis tool
is equivalent to the RTL fed into the tool. This verification proves that the
synthesis tool performed correctly and eliminates the need for reverification
of the gate-level representation. Quite often portions of a design, such as
memories, data paths, or pin interfaces, are not developed from an RTL repre-
sentation synthesized down to a standard gate-level representation. These
portions are created by hand with custom design methods. To simulate these
portions, a model is created at a higher level of abstraction, so performance is
not degraded. Equivalency checkers can be used to verify that the functional
model of the custom-designed portion used during functional verification is
equivalent to the design that will be implemented. Using equivalency check-
ers in these ways enables you to functionally verify the design once at a high
level of abstraction and then prove equivalency to the lower implementation
levels rather than reverifying the design at each level.

When two designs are not equivalent, equivalency checkers can also pro-
vide you with the exact functional differences. This information is useful
when small changes are made, such as resizing components, adding test and
clocking logic, and correcting minor functional errors. Instead of reverifying
the entire design each time a change is made, you can use equivalency check-
ers to identify the exact difference between the original verified design and
the new modified design. This comparison assures the development team that
the change did not inadvertently affect some other part of the design that
could cause a functional error.

136 Professional Verification

Model checking tools are perhaps the most commonly associated with for-
mal verification techniques today. Model checkers prove that a property or
assertion about the design is true or false. Advanced verification teams use
these tools in two different ways: to verify specific parts of the design that are
most amenable to formal proofs or to find difficult bugs that the user had not
thought of or was not able to simulate. Each of these uses can enhance your
verification methodology.

Because of capacity and performance issues, formal model checkers have
never been able to keep pace with the growing size and complexity of digital
designs. Thus, the use of model checkers has been focused on parts of the
design that are small enough to fit in the tools and are amenable to formal
techniques. The strategy many advanced teams use is to identify areas that
will be very difficult to verify with simulation because of the number of com-
binations of interactions that would need to be tested. Examples of these areas
include complex control logic found around memory controllers and bus
interfaces, arbiters, and complex queuing and flow control logic, such as
leaky bucket or token-based algorithms.

Once the areas are identified, these blocks are given to a verification spe-
cialist who is familiar with model checking. Model checkers are very
complex to run and debug, so a specialist is usually required. The specialist
meets with the block designer to identify properties or assertions that need to
be proven. The designer might be able to provide some assertions in the form
that was embedded into the code, but often they need to be modified for the
tool. The specialist also needs to understand how stimulus is applied to the
design, and what legal or illegal stimulus is. Constraining the tool is perhaps
the most difficult part. If the inputs or the assertions are underconstrained, the
tool reports many invalid violations. If they are overconstrained, bugs could
be missed.

The specialist runs the tool and identifies which violations are caused by
incorrect constraints and which may be real bugs. The specialist identifies the
bugs to the designer, who then determines whether they are real bugs or cases
where more constraining is required. The specialist modifies the constraints
or obtains a bug fix and reruns the tool to repeat the process. When the tool

Chapter 13: Formal Verification Tools 137

The users of functional equivalency tools are most often the engineers
responsible for logic synthesis, model creation, and final implementation.
Most advanced verification teams are not involved in these functions, so their
use of equivalency checkers is limited. However, verification engineers need
to understand their use to be able to identify when they should be used and
when reverification is necessary.

Model Checkers

138 Professional Verification

reports that no violations can be found, the design is considered verified,
although many teams go back through the constraints to verify that the tool
has not been overconstrained.

Model checkers are also used in a newer form of formal verification called
semi-formal verification. Semi-formal verification tools overcome many of
the deficiencies of formal tools by combining formal techniques with standard
simulation techniques. The premise is to find difficult bugs within your
design that cannot be found with traditional approaches. These bugs are diffi-
cult to find with directed tests because they are so complex and obscure that
you cannot possibly think of every possible scenario. They also cannot be
found with random techniques, because the stimulus to trigger them is very
complex or the number of possible scenarios is so great that the odds of ran-
domly finding them are slim.

The original promise of semi-formal tools was that you could use simula-
tion techniques to lead you to interesting areas in the design where bugs might

Model checking is a powerful way to focus verification on one area of a
design, but it does have its drawbacks. First, the technology requires a spe-
cialist to operate. Many large companies can afford to hire one or a team of
model checking specialists, but smaller or resource-limited companies usually
cannot. Secondly, the design areas where model checking is useful is limited.
Finally, model checking does not always come up with a complete proof of an
assertion. It is common for the tool to report that it was unable to prove if the
assertion was valid or not. If this happens, all the work to run the tool was of
no value.

Semi-Formal Verification

be hidden and then use formal techniques to expand from that location to for-
mally prove all the possible combinations of events around that area as shown
in Figure 50.

The promise of semi-formal tools has not yet been realized because of the
difficulty of automatically finding interesting states to start from and detect-
ing bugs once you do find the area. Automatically identifying interesting
areas requires a target for the tool to search for. The most common method is
to search for coverage metrics like state machine arcs or process interactions.
Unfortunately, these do not always lead to the most interesting places and can
often send the tool off into unimportant areas, such as test logic. A
workaround is for the user to supply information to the tool. Some tools use
an already created directed test as a jumping off place to engage formal verifi-
cation techniques by formally verifying the design starting from the existing
states of the test. Another group of tools uses assertions placed in the design to
target the formal verification engines. These tools simulate the design until
the assertion is stimulated, and then they engage the formal engine to verify
possible scenarios starting from that point. Directed tests or assertions help
direct the semi-formal tool to interesting areas, but these areas must first be
identified by the user. If a difficult bug is not found in an identified area, the
odds are slim that it will be found with these tools.

The other issue is whether semi-formal tools have the ability to check for
bugs once an interesting area has been identified. The most common form of
checking used with testbenches is data checking. Data is applied to the design,
and the results are compared with expected results at the output of the design.
This is true for a design as complex as a router or as simple as an FIFO. Data
checks require the ability to track or store data as it moves through a design
and the ability to predict the correct response. Formal verification techniques

Chapter 13: Formal Verification Tools 139

require that the design as well as the verification logic be understood by the
tool. Thus, formal techniques are targeted more at sequence or protocol
checks that verify the relationship between signals or events. Formal verifica-
tion cannot handle large arrays of data storage required for data tracking and
cannot understand data prediction and checking operations required for data
checks. These limitations result in data checkers being removed from the for-
mal proof. The only checks made while the semi-formal tool is looking for
difficult bugs are the assertions placed in the design. If the tool does find an
interesting state and covers a scenario that can cause a bug, that bug is only
detected if one of the assertions catches it.

Even with these limitations, today’s semi-formal tools still provide
another mechanism for increasing the likelihood of catching a difficult bug.
These tools can handle larger and more complex designs and are easier to use
than traditional model checkers. Advanced verification teams use these tools
as an additional mechanism to find bugs that they might not have been able to
find before. Unfortunately, the limitations and the inability to provide cover-
age information means that these tools do not replace existing tasks but rather
they add to your already complex verification task.

140 Professional Verification

Testbench Development
Measuring the trade-offs

Simulation is by far the most prevalent technique used in functional verifi-
cation today. The ability to verify the ideas as well as the implementation
before a device is manufactured saves a development team time and effort.
Developing a testbench environment is often the single most important and
time-consuming task for an advanced verification team. Many excellent
classes and texts on how to build a testbench for various types of designs
using various languages and tools are available. This chapter presents some
important issues and trade-offs that verification teams need to consider before
building a testbench. It also describes how to develop a reusable unified
advanced testbench.

Teams should focus on three basic goals when developing a testbench:
efficiency, resusability, and flexibility. The testbench should make verifica-
tion more efficient by removing the low-level details and redundant processes
so that the verification engineer can focus on testing and debug. The testbench
should be designed to facilitate reuse of its components within other similar
testbenches. The testbench needs to flexible so that it can be easily leveraged
and integrated with other environments. It should facilitate the integration of
different designs and support the integration of the design being verified.
These three goals often conflict, forcing the testbench developer to make
trade-offs to create a testbench most suitable for the intended use.

To improve the reusability of a testbench, a developer should focus on iso-
lating the design-specific information in the testbench and separating the

Chapter 14

TRADE-OFFS

Reuse—Isolating Design-Specific Information

Testbench developers have been striving to meet the goals of efficiency,
reuse, and flexibility for many years. Unfortunately, attaining these goals
often makes testbenches more complex to create and more difficult to use.
Every testbench developer must make a trade-off between the time and effort
to create and use the testbench versus the potential gain from making the test-
bench efficient, reusable, and flexible.

functionality of the testbench. Whenever information that is specific to the
design being tested is embedded in parts of the testbench, it becomes less
reusable. The application-specific information most likely will need to be
modified before the testbench can be reused for a different design.

A testbench provides several basic functions, including creating and
applying stimulus and verifying the correct interfacing and responses. Each of
these functions can have design-specific properties, such as the stimulus gen-
erator generating a certain type of data and the device interface applying data
to a specific type of bus. Separating these functions into different components
allows the functions to be reused in a different configuration for a different
testbench.

Partitioning and separating information takes time and effort. Knowing
about the number of cycles after stimulus the response appears, or observing
internal design signals to help predict the expected result, can simplify test-
bench creation. However, once this information is embedded in the testbench,
it is difficult to reuse the testbench for a different design or modification of
the design. Partitioning the design into different pieces also comes with the
overhead of defining more interfaces and maintaining more modules.

Most advanced verification teams find that small internal blocks with non-
standard interfaces are the worst candidates for reuse. Testbench reuse is most
advantageous at the subsystem level, where interfaces are more standard and
the testbench components more complex.

142 Professional Verification

Efficiency—Abstracting Design Information

To improve the efficiency of a testbench, a developer should abstract
design information to a higher level. The testbench should represent data and
actions in a format most easily understood by those using the testbench. Test
writers should be able to write their tests at a functional level consistent with
the application. Low-level implementation details that are irrelevant to the
test should not be specified. Throughout the testbench, data should be cap-
tured and compared at a higher level of abstraction to make debug easier.

The most important step in abstracting design information is choosing the
correct higher levels to abstract to. The levels chosen should be consistent
across the testbench so that common test infrastructure and analysis mecha-
nisms can be used. Once the abstraction levels are chosen, converters can be
created to facilitate the abstraction. A converter can be created to convert a
high-level test language used by a test writer to the stimulus generator tasked
with creating the specific stimulus. Converters can also be created at inter-
faces throughout the testbench to convert from the low-level implementation
details to the higher abstraction levels.

To improve the flexibility of a testbench, the developers should focus on
utilizing standard interfaces to facilitate multiple different uses. The devel-
oper should use standard interfaces for all tools and processes associated with
the testbench. Examples of these interfaces include testbench development
languages, simulator interfaces, and debug methods. Developers should not
be trapped into using only a limited set of options for tools and processes
associated with the testbench. They should focus on industry standards sup-
ported by two or more independent parties and controlled by an independent
organization, like the IEEE.

The first step in utilizing standard interfaces in a testbench is clearly seg-
menting the intended functions of the testbench from the function of external
tools or processes. Developers should focus their energies on the functions of
the testbench that provide the most unique value. Once this segmentation is
determined, the developers should standardize on an interface to the testbench
that allows for flexibility and adaptability in connecting to the testbench.

Using standard interfaces might rule out using some of the most leading
edge tools and technologies for developing a testbench. Any standardization
process takes time, and developers might not want to wait for multiple parties
to agree on a solution. In these cases, developers should make sure that their
interfaces to new tools and processes can be changed in the future if a better
interface comes along so that they do not get locked into a proprietary
interface.

Advanced verification teams develop their testbenches independent of the
tools or languages used. The environment of the language used should not
dictate the architecture of the testbench. These teams make sure their test-
bench is adaptable so that they can easily switch tools or technologies without
changing the testbench architecture.

Chapter 14: Testbench Development 143

Abstracting design information in a testbench requires extra work and pro-
duces extra testbench code. Developing converters is not a trivial task and
always has the potential for introducing new bugs. The gain in efficiency
obtained from abstraction often comes at the expense of controllability and
observability. Removing the implementation details from the test writing pro-
cess limits the control the test writer has to affect the stimulus. Abstracting
implementation details from design data for checking and debug might also
overlook important implementation characteristics, and possibly bugs.

Most advanced verification teams find abstracting design information to
be valuable for newer designs that require a large number of tests and long
debug cycles. Existing designs with existing stimulus sets do not benefit from
large efficiency gains from abstraction.

Flexibility—Using Standard Interfaces

Developing a testbench is a balance of many different factors. Knowing
the scope of the verification task helps determine the size of the testbench and
the requirements for reuse and integration. Is the goal to verify an entire sys-
tem from the ground up or to verify an individual device or block within the
system? Do you need to verify the integration of software, analog, or pur-
chased IP within the context of the testbench? Verifying a complete system
from the ground up requires a testbench that can verify from the small block
level up to an integrated subsystem and to a final system level. Verifying a
system made up of existing parts might just entail developing a testbench that
verifies the interconnection and interoperability of the different parts. Verifi-
cation of a single device or block might limit the necessity for reuse within the
testbench.

You should consider the type of design being verified. A design where
data flows through the design from input to output with some translation
occurring to the design might require a basic single driver and checker test-
bench. A design that controls a central resource where data passes in multiple
directions with different input and output ports might require a more central-
ized testbench. In general, a testbench should be a reflection of the
environment that the device will operate in. If that environment is similar to a
data path, the testbench should operate like a data path. If the design is a cen-
tral controller, the testbench should operate like a group of centrally linked
resources.

The testbench developer also needs to know how thoroughly the design
needs to be tested within the testbench environment. If the testbench is the
only place the design will be tested before its manufacture, the testbench
needs to simulate all possible corner cases, including illegal operations. If the
design will be integrated and tested with a different testbench or prototype,
the testbench developer might be able to be less thorough.

Another factor to consider is what test and design information is available.
If a system model is available, the testbench developer might be able to use
this within the response checker or as a substitute for a design block. If stimu-
lus files with the correct response information are already available, the
testbench developer can use these in place of stimulus generators and
response checking. If standard algorithms or specifications that can be easily
converted to a model are available, the testbench developer might be able to
utilize this information.

You should also consider the practical aspects of the verification task. The
program schedule will most likely dictate how much time the developer has to
create the testbench. The number of resources and the skill level of the devel-
opers should be factored into how the testbench will be implemented and how

144 Professional Verification

Balancing Practical Concerns

When developing a complex testbench to verify a device at multiple levels
of hierarchy, the most basic question to ask is where to start. There are two
schools of thought when developing testbenches in a hierarchical manner.
Some teams believe that it makes most sense to start at the lowest level of
hierarchy and develop the testbench to first verify the units or blocks that
make up the design. As the units are integrated into blocks and the blocks are
integrated into subsystems or systems, the testbench is developed in the same
bottom-up approach. Other teams believe it is best to develop a testbench
from the highest level of the hierarchy and derive the testbenches for each
lower level from the higher levels. As the system is partitioned down into sub-
systems, blocks, and units, the testbenches are partitioned in a similar top-
down manner.

Whether to develop a testbench in a top-down or a bottom-up method
depends on several factors. First, is a system model available. The top-down
approach is usually most applicable to teams that are using a system model in
their verification environment. The bottom-up approach is usually used by
teams that only have a written specification. A second factor is the necessity
to integrate other design domains and software development into the verifica-
tion process. The top-down approach is beneficial when the design requires
integrating software or analog/RF domains at the system level. Thirdly, what
is the availability of resources? The top-down approach offers greater benefits
if the development team has a separate verification team to write tests and
develop the testbench in parallel with the implementation of the design. If the
development team relies on the designers to perform verification or the verifi-
cation team is not engaged until after the design is complete, a bottom-up
approach may be more efficient. Then there is reuse. The top-down approach
is able to more fully utilize reusable testbench components. Finally, what is
the skill level of the verification team. A bottom-up approach requires less
knowledge of complex verification, such as system model development and
reuse. A testbench developed from a top-down system model requires more
maintenance to keep the model and testbench up-to-date with the design.

Because of these benefits and requirements, some development teams
choose a more specification-based bottom-up approach to subsystem verifica-
tion for today’s designs. However, as the use of processor-based SoCs
increases, along with the further integration of digital and analog on the same
chip, the benefits of a top-down methodology will cause many teams to
migrate. In Chapter 8, we presented a top-down flow for SoC-based designs

Chapter 14: Testbench Development 145

complex it will be. The number of test writers and their skill level should also
be factored into the interface to the testbench.

Top-Down vs. Bottom-Up Testbench Development

as a standard for teams to migrate toward. We also presented a bottom-up
specification-based flow that utilizes many of the advanced techniques of the
top-down flow as a place to begin the migration.

There are many similarities between these two flows. Even though the bot-
tom-up flow develops the testbench from the lowest unit level up to the
subsystem level, the planning and architecture for the flow is top-down. The
only way to create testbenches that can be reused as the design develops from
the unit to the block to the subsystem level is to plan ahead and know what
will be required at higher subsystem levels. Similarly, even though the top-
down flow develops the testbench from the top SoC level down to the lowest
unit level, testing and integration are still performed in a bottom-up manner.
Both flows use transaction-based testbenches for performance, assertions for
easy debugging, coverage for efficient test development, and hardware accel-
eration for increased performance.

The two flows differ in the development of the verification environment
and tests. In the top-down flow, the environment is developed from the high-
est levels down to lower levels using common models and testbench
components. The SoC-level environment is developed first with a system
model, the system model is refined down to the block and sub-block level,
and the testbench is developed in the same manner. This enables the verifica-
tion engineers to use the model to test their code, allows reuse of the models
in the system model at different levels, and promotes parallelism and acceler-
ated integration of the implementation when it is made available.

The bottom-up flow develops the testbench from the lowest level up to
higher levels. The flow reuses testbench components from the lower levels as
the design is integrated and tested. Since a common model is not used, refer-
ence checkers might need to be developed at each level or linked together.
Also, the lack of an accurate model means the tests and testbench components
are developed in isolation until the implementation is available. This might
cause the simultaneous debugging of implementation and testbench.

Chapter 8 discussed verifying digital subsystems within the context of the
UVM. The development of a unified testbench is vital to attaining the UVM
goals of increased speed and efficiency. Here, we describe a high-speed, reus-
able testbench that meets the requirements of the UVM.

146 Professional Verification

UNIFIED TESTBENCHES

Chapter 14: Testbench Development 147

High-performance, reusable testbenches are based on standard compo-
nents with a common interface for communications at different levels of
abstraction. Figure 51 shows the basic components.

Transactors change the levels of abstraction in a testbench. The most com-
mon use is to translate from implementation-level signaling to a higher level
transaction representation or the reverse. Transactors are placed in a testbench
at the interfaces of the design, providing a transaction-level interface to the
stimulus generators and the response checkers. Transactors can behave as
masters initiating activity with the design, as slaves responding to requests
generated by the design, or as both a master and a slave. The design of a trans-
actor should be application-independent to facilitate maximum reuse.
Application-specific information can be contained in the stimulus generators
or TLMs attached to the transactors. Also, when developing a transactor, the
designer should consider its use in a hardware accelerator. Developing the
signal-level interface in a synthesizable manner allows it to be accelerated
along with the design, improving the performance gain obtained from a hard-
ware accelerator.

Testbench Components

Stimulus Generators

Transactors

Stimulus generators create the data the testbench uses to stimulate the
design. Stimulus generators can create the data in a preprocessing mode with
custom scripts or capture programs, or they can create the data on-the-fly as
the simulation occurs. Stimulus generators are usually classified by the con-
trol the test writer exerts on the generation of the stimulus.

Scoreboards are used when the design responds in a predictable manner
and the data is easily correlated, such as a bridge or a switch design. Refer-
ence models are used when the design can be easily modeled independently
with enough accuracy, such as a computation unit or a pipeline. Performance
checkers are used when the functions in the design are unpredictable due to
implementation specifics, and the correct operation can be specified by the
characteristics of the design, such as a rate limiter or a routing algorithm.

148 Professional Verification

Interface Monitors

Interface monitors check the correct signaling and protocol of data trans-
fers across design interfaces. In some testbenches, interface monitors are
combined either with the transactors or with the response checkers. Keeping
interface monitors separate from these components allows for maximum
reuse of the monitors. In addition to passively monitoring the data transfers
across interfaces, these monitors can encapsulate the data to be communicated
to response checkers. This allows the response checkers to concentrate solely
on verifying correct operation. Interface monitors contain interface assertions
and can be written in an assertion language. The interface monitors should be
application-independent and written in a manner that allows their easy reuse
in hardware acceleration.

Response Checkers

Response checkers verify that the data responses received from the design
are correct. Response checkers contain the most application-specific informa-
tion in the testbench and usually can only be reused when the block they are
monitoring is being reused. There are three basic types of response checkers:

Reference model response checkers apply the same stimulus the
design receives to a model of the design and verify that the response
is identical to the design. The most efficient method is to reuse the
TLMs of the FVP for the reference models in the response checker.

Scoreboard response checkers save the data as it is received by the
design and monitor the translations made to the data as it passes
through the design. The translations are tracked with a Scoreboard,
and responses are verified as they are generated by the design.

Performance response checkers monitor the data flowing into and out
of the design and verify that the correct functional responses are
being maintained. These checkers verify characteristics of the
responses rather than the details of the response.

Chapter 14: Testbench Development 149

Top-down testbench development starts with the development of a top-
level subsystem testbench environment once the FVP and specification are
delivered to the team. The subsystem testbench reuses some components from
the FVP, as shown in Figure 52.

The SoC team might provide signal-level transactors, or the subsystem
team might develop them. The subsystem team develops the tests, which are
verified in the testbench by substituting the FVP TLM for the implementation
until it is available. This allows the test writers to develop and test their code
before the implementation block is available, making the process more effi-
cient. This is shown in Figure 53.

Testbench API

Top-Down Testbench Development

The testbench API facilitates the communications between components in
the verification environment at different levels of abstraction. The API is the
glue that holds the testbench together. Using a standard API allows for the
reuse of components within the verification process and between different
projects. The testbench API defines the interface layers between components
and between different abstraction levels.

150 Professional Verification

As the subsystem is micro-architected, it is partitioned into smaller hierar-
chical blocks and units. Large complex subsystems require the verification
team to do much of the verification at the block level. The verification team
chooses the levels of hierarchy to test at by selecting blocks with common
standard interfaces that provide enough observability and controllability and
are not too large for simulation tools to be efficient. Often designers want to
verify at the lowest unit level as they develop individual modules. This is
done by the designer using simple HDLs or HVLs, along with added struc-
tural assertions. The verification uses simple methods, applying stimulus
vectors and waveform inspection or application-specific environments. These
environments are not reused, since their purpose is simply to prove basic san-
ity of the unit-level modules.

Block-level testbenches are developed in a similar manner as the sub-
system testbench. The FVP is partitioned to match the verification needs and
reused in the individual response checkers. Transactors and interface moni-
tors are reused from the subsystem testbench. Common transactors are used in
slave or master modes for the different connecting blocks. The resulting test-
benches are shown in Figure 54.

Tests can be developed in advance of the implementation in the block-
level testbenches by substituting the models as described in the subsystem
testbench. When developed in a correct and efficient manner, the top-down
testbench method provides for the tests and testbench to be completed and
debugged before the implementation is delivered by the design team. This
creates the fastest and most efficient debugging and integration flow.

Chapter 14: Testbench Development 151

Bottom-Up Testbench Development

Bottom-up testbench development starts with the partitioning provided by
the micro-architecture teams. When the partitioning is available, the verifica-
tion team selects the block and subsystem levels to test at. Often designers
want to verify at the lowest unit level as they develop individual modules.
This is done by the designer using simple HDLs or HVLs, along with added
structural assertions. The verification of these units uses simple methods
applying stimulus vectors and waveform inspection or application-specific
environments. These environments are not reused, because their purpose is
simply to prove basic sanity of the unit-level modules.

Block-level development begins with building individual testbenches for
the lowest block-level verification. New transactors, interface monitors, and
response checkers are developed or reused from previous projects if available.
The response generators can be based on models or modified from the FVP,
but maintaining consistency between these models is difficult. Unless a
behavioral model is available, the test teams must wait to run and debug their
tests until the implementation is available.

The subsystem testbench is developed from the existing block-level test-
benches, as shown in Figure 55. Transactors at internal interfaces are
removed, and the response checkers are linked together with interface moni-
tors to provide a complete subsystem response checker. Close communication
must be maintained between block-level developers so that the subsystem
integration works correctly. Blocks located closer to the stimulus must con-

152 Professional Verification

sider the effects of their environment on connecting blocks. Also, changes in
the block-level testbenches must be propagated to the subsystem testbench
and visa versa. Good communication and planning are required to make the
integration of bottom-up testbenches efficient.

VERIFICATION TESTS

So far we have only briefly talked about the actual tests that will run on the
testbench being developed. Many verification teams separate the creation of
the testbench from the creation of the test stimulus, because the two tasks are
very different and require different skills. Usually a testbench is developed by
a few engineers who are highly skilled at developing complex code and sys-
tems. Complex systems can require large teams of test writers that need to
know the intricacies of the design and understand how to test that it is work-
ing correctly. Development teams often use design engineers and software
engineers to write tests for a period of the development time.

The goal of the testbench developer is to create a testbench that allows the
test writer to write and debug a test in the most natural form possible. The
testbench should shield the test writer from the complexities of managing data
and interfacing to the design. In this section, we will take a closer look at
developing tests for an advanced verification testbench.

The two basic types of tests written today are directed and random.
Directed tests specify the exact type and sequence of stimulus to provide to
the design. Random tests automatically select part or all of the information for
the test, including type, sequence, and timing of the stimulus. There are
advantages and disadvantages to using random or directed tests. Most
advanced verification teams use a combination of random and directed tests.

A directed test tests a specific function in a consistent, thorough, and pre-
dictable way. It is usually targeted directly at a specific feature or function
with the stimulus coded specifically to stimulate and verify that operation.
Using directed tests, you can incrementally test function after function and
build up a thorough regression suite that can be used to reverify that function
if the design changes. The disadvantages of directed tests are that they require
detailed knowledge of the design being tested and are often very difficult to
set up. Also, a large complex chip could require thousands of directed tests to
fully verify the design. The time required to write these tests might not be fea-
sible for the development schedule.

Random tests allow for the automatic creation of many cycles of stimulus
with limited knowledge of the design required. You simply specify the range
of values for the stimulus generator to generate data and let the test run for as
long as you want. You only need to understand what stimulus is legal to apply
and not the intricate implementation details of the design. One random test
can verify many functions, so fewer random tests are required than directed
tests. The disadvantage of random tests is that it is difficult to know what the
random test has verified. You may need to insert monitors or use coverage
information to understand which functions the random test stimulated and
checked. Even if you can determine which functions have been verified, it is
often difficult to consistently repeat the test for regression purposes. A com-
plex random environment can behave completely different even if one small
change is made to the test, testbench, or design. Thus, you might need to
reverify what the random test had verified each time it is run. The other disad-
vantage of using a random environment is that it can be very difficult to
debug. When debugging a directed test, the debugger knows what the test is
designed to do. Because the random test determines the stimulus, it is difficult
to debug a failure and to incrementally verify a design as the functionality is
implemented.

There are several types of directed tests. Interface tests verify the correct
operation of each of the major interfaces found in the subsystem. The tests

Chapter 14: Testbench Development 153

Directed and Random Tests

Types of Directed Tests

verify correct handshaking and error handling. Stress tests are included to ver-
ify the constraints of the interface, such as time-outs, aborts, and deadlocks.
These tests should be run first to verify the correct communication between
the testbench and the design. Feature tests verify the processes contained
within the subsystem. These tests verify the correct operation of the features
under normal and stress conditions. Stress conditions include system interac-
tions between features, such as interrupts, retries, and pipeline flushes. These
tests are run second with the goal of verifying each feature in isolation under
non-stress conditions before turning on randomness.

Error tests verify the correct operation of the subsystem to error condi-
tions. Error conditions consist of recoverable and non-recoverable errors.
Recoverable error tests verify the observation of the error and the recovery
from the error. Non-recoverable error tests verify the observation and the cor-
rect system response, such as a halt, freeze, or interrupt signal. These tests
should be run after feature testing is complete and random tests have run for
multiple hours without failing. Performance tests verify that the subsystem
meets the performance requirements of the system. Performance requirements
can include latency, bandwidth, and throughput. The tests stimulate the sys-
tem with normal rate stimulus as well as corner case stimulus that is known to
be performance limiting. Performance tests are run periodically throughout
the testing process to verify that the design is still meeting test goals and
should be run again at the end of testing to verify that design changes and bug
fixes have not violated the performance goals.

154 Professional Verification

Combining Random and Directed Approaches

When random testing first became popular, many teams believed that the
best approach was to first run random tests, measure what had been tested,
and then write directed tests for the areas that were not stimulated by the ran-
dom tests. In theory, this made sense; but in practice, it had many flaws.
When a design is first verified, it can contain many basic bugs. The most effi-
cient way to bring up a design is to test it in stages, applying very basic
stimulus first to verify that it works before applying more complex stimulus.
When using random tests, you often have limited ability to select in which
order stimulus is applied, so a random test does not always follow the most
efficient bring-up process.

It is also difficult to measure what the random test verified. Coverage tools
can provide some information about what areas of the design have been stim-
ulated, but they cannot tell whether a function has been verified completely.
Some teams place monitors in the design that signal when a function has been
tested. Placing these monitors throughout a design can be time-consuming
and requires intimate knowledge of the design. Knowing at what point to stop

running random tests and begin writing directed tests is also a challenge. The
team needs to leave enough time for the directed tests to be written to cover
the areas not stimulated by the random tests, but you do not know how many
directed tests are needed until the random tests are run. Also, as noted earlier,
the behavior of random tests can change with small changes in the design or
testbench. This means that what is tested by random may change from run to
run. Thus, it is often difficult to come to closure on exactly which directed
tests need to be written. Often, a verification team thought they completed
verification when it was discovered that a change in the testbench required
another directed test to be written. This open loop process makes it very diffi-
cult for verification teams to know when the design is verified to a sufficient
level to be taped out.

Today, advanced verification teams use a subset of directed tests first, then
use random tests followed by more specialized directed tests. Advanced veri-
fication teams first develop a group of must-have directed tests that are used
in bring-up and verify the most important functionality. These tests are also
used as a consistent regression suite. After the first directed tests are run, the
team can feel confident that the design is at a level of sanity where random
testing will be of most use. The team can use monitors or assertions in con-
junction with coverage tools to get a good idea of which functions have or
have not been stimulated. At this point, a final set of directed tests are run to
verify the special case conditions that were not hit by random. Having a suite
of directed tests that verifies the most important functions eliminates the fear
that random testing missed a basic function that pops up late in the develop-
ment stage.

Chapter 14: Testbench Development 155

Constraining Random Tests

Random tests vary in the freedom of the randomness available when gen-
erating the stimulus. A pure random test is free to apply any stimulus at any
time. This means that an input driven by the test could be set too high or too
low at any time, in any sequence, with no restrictions. Pure random tests are
rarely used because the lack of control makes the odds of the test stimulating
an internal function very low. Instead, most tests constrain the randomness by
limiting the data values, timing, or sequences to predefined ranges. By con-
straining the randomness, these tests can focus on stimulus that is of highest
value and has the highest likelihood of stimulating internal functions.

The most basic constrained random tests randomize the data values across
a specific value set. These tests randomly pick a value within a defined set of
values specified by the test writer. For example, a test writer could specify
that a CPU request be either a read or a write, access an address within a cer-
tain range, and wait between one and five cycles before starting the request.

More complex constrained random tests might specify weightings to the val-
ues in the defined set, making it more likely for the random generator to select
one value or a range of values in the set over other values. For example, a test
writer could specify that a CPU request be a read 10 percent of the time and a
write 90 percent of the time, or that the operation accesses certain values
within a defined range more often than other values.

As more constraints are added, it is more likely that the constraints overlap
and form complex relationships. For example, a test might specify that a
request be either a read or a write, but if the request is a read, the address
range contains one set of values and if it is a write, the address range contains
a different set of values. There is now a relationship between the request type
and the address of the request generated. The random system must decide
which random value to pick first. If the request type is generated first, the sys-
tem must generate the address within the range for that request type. If the
address is generated first, the system must make sure that the request type
generated is the correct one for the address. Complex verification tests can
contain hundreds of different constraints that all have relationships to each
other. Verification systems require constraint solvers that use mathematical
techniques to manage the correct selection of values to meet all the necessary
constraints.

The more a random test is constrained, the more control the test writer has
over the generation of stimulus and the more likely the test stimulates the
intended functions. Also, the more a random test is constrained, the more sim-
ilar it becomes to a directed test and the more design-specific information is
required of the test writer. Test developers need to balance the need for con-
trolling the randomness to target specific areas with the power of randomness
to stimulate and discover areas that are unknown to the test writer.

Advanced verification teams utilize constrained random tests as a substi-
tute for many of the directed tests they would need to write. One random test
running for many cycles might stimulate the same functions as five or ten
directed tests. Constrained random tests are also used to duplicate the random
nature of traffic flowing into the system. Most electronic systems today oper-
ate in a very non-deterministic environment. Verification teams want to be
able to verify that the system operates correctly in a similar non-deterministic
manner. Constrained random systems can mimic the traffic patterns that
might be seen by the device.

Testbench Requirements

Constrained random tests require a testbench that has been designed for
supporting a constrained random approach. The testbench must be self-check-
ing. Random tests can run for long periods of time and generate large amounts

156 Professional Verification

of response data. The testbench needs to be able to check the responses as
they occur so that the test can be stopped when an error occurs. In addition,
the stimulus generator must provide an efficient interface for the random
tests. It must define each of the parameters that the test writer might random-
ize and provide default constraints for each parameter. In the most simple
form, a test might only need to specify how long to run, and the stimulus gen-
erator generates data based on the default constraints. The test writer should
be able to override these constraints to create specific tests. The complexity in
a constrained random test is not in the test but in the testbench.

Chapter 14: Testbench Development 157

This page intentionally left blank

Chapter 15

Advanced Testbenches
Using assertions and coverage

As the size and complexity of designs has increased, testbenches have
become more focused on testing the design from its periphery. Testbenches
have evolved to treating the design as a black box and testing it by applying
stimulus at its inputs and observing its outputs with little regard to the specific
implementation. This approach allows verification teams to verify large
designs because it requires less intimate knowledge of the design. A black-
box approach also facilitates reuse since less design-specific information is
contained in the testbench. This focus on simplicity and reuse has resulted in
testbenches that provide stimulus and checking capabilities but limited visi-
bility of the implementation. Using a more visible or white-box approach to
verification, however, eases debugging and provides knowledge on what has
been tested. Assertions and coverage techniques, which have been touched
upon throughout this book, provide a more white-box approach to verifica-
tion. Today, black-box testbenches are combined with these white-box
techniques to provide the efficiency, reuse, and flexibility that advanced veri-
fication requires.

ASSERTIONS

The use of assertions has become a hot topic in functional verification.
What is an assertion and how does it apply to functional verification? Theo-
retical sources describe assertions as capturing the designer’s intent and
specifying intended behaviors. Whereas the practical view is that assertions
are simply monitors placed in the design that identify actions within the
design. These monitors can identify illegal behaviors and act as a supplement
to the testbench checkers, or they can identify legal behaviors to help guide
the verification process. Assertions are also often tied to formal or static veri-
fication techniques, which are discussed in another chapter. This chapter
focuses on the practical application of assertions in a dynamic or simulation-
based verification process.

Assertions address three basic verification issues. First, they address the
issue of bugs being missed by the testbench and slipping through into the late
stages of the verification process or even into the manufactured device. Catch-
ing a functional bug is a combination of stimulating the design to cause the

160 Professional Verification

bug to occur and checking the response to identify the consequences of the
bug. The testbench is responsible for generating the stimulus to cause the bug
to occur in a dynamic verification environment. Assertions increase the
amount of checks within a design, making it more likely that a bug is found if
it has been stimulated.

The second issue addressed is the time it takes to debug a failure in simu-
lation. The process of debugging simulation failures is often described as
peeling onions. The failure usually is first identified at the external interface
of the design. The debugger must step back through each layer of the design
to try to locate the cause. This can be very time-consuming and complex,
depending on the size of the design and the location of the bug. Assertions
provide checkers inside the design closer to the source of the bug, making
debugging easier and faster.

Assertions also address the inefficiency of directing the verification pro-
cess. An efficient dynamic verification process runs the test that has the
highest likelihood of finding the next bug or verifying the most important fea-
ture in the design. This is difficult to do unless you know what has been tested
in the past and what remains to be tested. Assertions can make the dynamic
verification process more efficient by providing accurate and timely informa-
tion about what has been tested.

Perhaps the easiest way to understand how assertions address many of
today’s verification issues is to look at the process of writing, running, and
debugging a test and how assertions are used during this process.

Using Assertions in the Test Process

The first step in the test process is determining how to stimulate a desired
function or feature of the design. You can write a test that directly proves the
function to be correct or that simply stimulates the function with a wide range
of stimulus to verify its operation. The effects of a bug can take many forms
and, as the bug propagates through the design, the form can change. Test writ-
ers need to be aware of which types of checks are being performed by the
testbench checkers. If the testbench checkers are not sufficient to catch a pos-
sible bug, the test writer might need to add checks. Even with random tests,
you need to be aware of the propagation of bugs and the types of checkers
available. Assertions address both these issues. Assertions detect bugs closer
to the source, so less propagation is required. Assertions also provide a larger
number of design-specific checks throughout the design, increasing the likeli-
hood that a checker is in the correct place to catch a bug.

Once the test has been written, the next step is running the test. The big-
gest concern is knowing that the test is doing what was intended. In many
cases, this is self-evident. In other cases, a bug in the design or a misinter-

Chapter 15: Advanced Testbenches 161

preted specification can cause the design to operate in an unintended manner,
allowing the test to pass without verifying the intended function. One way to
verify the operation is to review the waveforms of the simulation to make sure
that the correct functionality was stimulated, but this can be a very time-con-
suming task. Another way is to place monitors in the design to identify when
certain functions are being stimulated. Assertions provide monitors through-
out the design, which can identify illegal as well as legal behaviors. You can
also use assertions to identify that the test is not progressing and that the stim-
ulus is not reaching the intended functionality.

After the test has been run, any identified failures need to be debugged.
Debugging complex designs is often considered an art, but it is usually much
more of a methodical approach. The first step in the debugging process is to
try to understand as much about the failure as possible from the information
provided by the test. The debugger traces back in the design to identify what
might have caused the failure. This is done in the developer’s mind, working
with the knowledge he or she has of the design and test. In some cases, this
information leads to identifying the bug quickly; in other cases, it simply nar-
rows the possibilities down and gives the developer a starting point for
finding the bug.

Experienced engineers know that spending time trying to find a bug by
taking guesses at possible causes based on incomplete information is a waste
of time. Instead, they use a more methodical approach of obtaining the neces-
sary information, often described as “onion peeling.” They first look at the
most outer layer of information and then, based on that information, move
down to the next lower layer and based on that information obtained, move to
lower and lower layers. There are two approaches to this process. The first is
starting from the beginning and tracing the stimulus into the design, verifying
at each layer that the correct operations have occurred until an incorrect result
is found. The other approach is to start at the end and trace the cause of the
error back until the incorrect functionality is found. Once the area has been
identified, it can be isolated and monitored to identify the exact cause of the
bug. Then, a possible fix can be made to the design and the test reverified to
see whether the bug has been fixed. It is often common for one bug to hide
other bugs in the same functionality, so it is important to thoroughly verify the
fix.

Assertions placed throughout the design can identify the behavior of the
bug before it propagates and changes form. Assertions speed the process of
localizing where a bug might occur by providing more information to the
debugger earlier in the process. Instead of the developer rerunning the test and
probing points in the design to localize the bug, assertions provide that infor-

162 Professional Verification

mation. Placing assertions around an area where a bug was found helps to
reverify the bug fix and find any other bugs that might be hidden in the area.

The process of creating a test, running the test, and debugging failures is a
repetitive task. Once a test has been debugged, the test developer returns to
the next test and repeats the process. Selecting which test to create and run
next is very important for determining the most efficient verification process.
Randomly picking the next test or going in some arbitrary manner leads to
inefficient verification that takes longer to complete and results in important
bugs being found late in the development process. Advanced verification
teams prioritize the order of tests to be run so that the debug process is effi-
cient and the most important functions get tested early.

Verifying the functions in the order that they are used in the system, from
input to output, allows the developer to more easily isolate a bug when a fail-
ure occurs. It is also important to prioritize the testing of the most important
and most used functions early in the process. The goal is to identify bugs in
important functionality first so that they can be fixed early in the development
process. Often designs are required to tape out before the verification is com-
plete. Prioritizing the most important functionality allows you to have the
most confidence that the design will work if it has to tape out early. Prioritiz-
ing tests for debug and prioritizing by functionality might seem to conflict
with each other. Advanced verification teams try to mesh these two goals.
First, they prioritize for debug for early bring-up of the design to a level of
sanity, and then they prioritize by functionality.

Assertions can help identify which areas of the design have been tested
and which areas have been missed. Assertions provide coverage information
at the implementation level, which helps identify the degree that structures
and functions have been tested. We will talk more about using assertions as
coverage monitors in the coverage section of this chapter.

Using Assertions

Assertions have been used in the past mostly by large development teams.
These projects were usually very well staffed and had long development
cycles. The basic use model was for assertions to be placed throughout the
design either by the designer as the code was being written or by another engi-
neer after the code was written. Assertions were placed using a specification
language that best encapsulated the intended behavior of the implementation.
The full suite of assertions would be simulated with the design each time a
test was run. The benefit of this approach was that the code would be fully
instrumented with a wide net of checkers to catch as many bugs as possible.

Chapter 15: Advanced Testbenches 163

Most development teams today lack the time and resources to create such
an extensive net of assertions, nor do designers have the interest. Most design-
ers do not see the value in using assertions because they believe that their
code is correct and that assertions are a verification team’s task. Receding a
design in a different language to capture its intent seems like a redundant task.
The verification team usually lacks the implementation-specific knowledge
and the time to put assertions in for the designer. So, if the designer does not
create the assertions throughout the code, the older use model breaks down.

164 Professional Verification

Advanced verification teams have learned to adapt their use of assertions
to the realities of today’s development process. These teams use assertions to
address the specific needs of the process at each stage.

Assertions and the FVP

Architectural assertions can be used during system-level design. At this
stage, architects or system-level verification engineers add assertions to verify
features and architectural aspects of the design. These checks are often
included in the architectural checks or transaction-level interface monitors
described in the FVP. The assertions are usually written in the same language
as the model and testbench so that speed is not impacted.

Assertions at the Block Level

At the block level, structural assertions can be used inside the design, and
interface assertions can be used at the boundaries of the design. Using struc-
tural assertions at the block level is highly dependent on the designer. If the
designer chooses to insert assertions, the most efficient path is for the designer
to place assertions in the form of library elements instead of using a language
to define the check. Using assertion pragmas or comments that allow the user
to place the library in a shorthand manner facilitates this approach. Automated
tools interpret these comments or pragmas and synthesize the assertion in the
form of a library or language.

Structural assertions should be placed around design hot spots and in com-
mon bug-trap locations. Design hot spots are places in the design that are
highly suspect of being incorrect based on past experience. Areas such as
arbiters, state machines, or clock domain crossings are common areas for
bugs. Designers should be encouraged to place assertions in the areas they
believe to be suspect or where they have had problems in the past. Bug traps
are places where the manifestation of bugs is most commonly seen. Placing
assertions at places like a MUX, FIFO, or a handshake are often easy ways to
catch the results of a bug in complex logic. A common rule of thumb many
teams use is that if an assertion for complex logic cannot be written with a
library or a few lines of language, you should use bug traps to catch the effects
instead.

Once the code for a block is complete, the designer or a verification engi-
neer can add interface assertions to the block. Assertions for standard
interfaces can easily be added using a library approach. If the interface is not
standard and requires some unique checking, the assertions should be written
in a standard language. Interface assertions should be added at the interface
between major functional blocks and between blocks created by different
designers.

Chapter 15: Advanced Testbenches 165

Block-level simulations should be run with both structural and interface
assertions. Assertions might not be of value in the very early stages of bring-
up where clocks may be incorrect or the design not reset correctly. Most
teams choose to disable assertions until the design has reached a stable reset
or initialized state. The first stages of debugging can cause numerous struc-
tural assertions to fire due to the same simple bug. Teams might choose to
ignore structural assertions until the first few tests have passed.

Assertions and Chip-Level Verification

After individual blocks have been verified in isolation, they are integrated
together and verified as a full chip. Structural and interface assertions of the
individual blocks are integrated along with the design. Additional interface
assertions are placed at the primary inputs and outputs of the design and at
any missing internal interfaces. At this time, architectural assertions devel-
oped at the FVP are also integrated if they are not already part of the chip test
environment. If an FVP was not used or if additional architectural assertions
are required, they can be added using a standard language.

Simulation with assertions at the chip level is similar to the block level.
Assertions should be turned off during initialization, and structural assertions
might be ignored during basic bring-up. Fewer assertions fire during chip-
level simulation since they have already been thoroughly exercised during
block-level simulation, so each violation should be examined carefully. If
there are a large number of assertions in the design, performance could be
impacted. The team can turn off structural assertions if performance is unac-
ceptable. The team might also choose to use a hardware accelerator, in which
case all the assertions might need to be synthesized so that they can be accel-
erated with the design.

Assertions and System Verification

Many teams stop using assertions once they move from a testbench-based
verification environment to a real-world system verification environment.
Teams often remove assertions when using an emulation system or an FPGA
because of speed and capacity requirements. While it is important to focus on
speed and capacity during system verification, assertions can provide impor-
tant visibility that is often lost in emulation of FPGA-based systems. These
systems provide little or no internal visibility to help debug failures. Asser-
tions should be included with the design in the emulation or FPGA system to
provide this needed visibility.

166 Professional Verification

Flexibility and Reuse

Advanced verification teams do not get hung up on the mechanism for
placing assertions in the design. The teams use whatever is the best mecha-
nism for that point in the process. The result may be a design that has
assertions in various different formats, libraries, or languages. Teams should
not get tied down to one format. The verification platform should be able to
support these various forms in a unified manner.

It is also important to try to reuse assertions throughout the process. Asser-
tions created at the block level should also be used at the chip level and the
system level. The team should not get tied into one proprietary way of speci-
fying assertions, because this leaves assertions fragmented from stage to
stage. Assertions should also be used in software simulation as well as hard-
ware simulators and formal verification tools. Care should be taken to ensure
that the time and effort expended in creating assertions is amortized across all
these areas.

COVERAGE

One of the most common issues verification teams face is determining
when they have done enough verification to be confident that the design is
ready for production. Verification teams have attempted to use coverage as a
metric for determining completeness, but often come to the realization that
these techniques fall short of the original goal. Advanced verification teams
have learned that the coverage techniques and tools used today simply pro-
vide raw information that the user must correlate and comprehend before any
actions can be taken or conclusions made. The information is also incomplete
or inconclusive. Still, verification teams have found that the information that
coverage techniques provide is valuable in guiding the verification process in
the most efficient manner. In this section, we will explore coverage tech-
niques used by advanced verification teams.

Coverage cannot provide an answer to the question of completeness, but it
can provide some of the data to help make that determination. Advanced veri-
fication teams understand that the verification process is often very similar to
risk management. Before making an investment or placing a bet, one should
assess the risk of losing money and compare that to the possibility of being
rewarded. In a similar manner, when a development team decides they are
ready to tape out their design, they should assess the risk that there is a bug in
the design that will make the device unusable. This risk must be weighed
against the possible rewards of getting to market sooner. Coverage tools pro-

Chapter 15: Advanced Testbenches 167

vide the type of information that, along with experience and proper processes,
enables the team to make a fair and accurate risk assessment.

Coverage can help keep the verification process on the most effective and
efficient path. The verification process of a complex device can last many
months or years. Verification plans and strategies are usually developed early
in the process and might not be modified unless there is a major change in the
project’s direction. Advanced verification teams have found that it is good
practice to periodically check where they are in the process and reevaluate if
the original strategies are still the correct ones. High-level inexact data pro-
vided by code coverage or stimulus coverage tools can be enough to identify
which areas of the design are receiving the most verification and which they
might want to concentrate on more.

Perhaps the most important verification issue addressed by coverage is the
one that is most often overlooked. Coverage can be used to identify areas
within the design that have not been stimulated and, therefore, may be hiding
potential bugs. The previous section on assertions discussed the process for
finding bugs within a design. The first step in that process was generating
stimulus that stimulates the design in a way that manifests the bug. Verifica-
tion teams often find that the reason a bug has slipped through the verification
process is that they never verified that operation. Coverage information can be
used to find bugs that are missed in the verification process.

Using Coverage

Using coverage within a verification environment consists of three stages:
identification of goals, simulation, and analysis. The first stage in any mea-
surement process is determining what it is you are attempting to measure.
Advanced verification teams set coverage goals as part of their verification
strategy. The verification team develops a test plan that identifies the func-
tionality to be tested and a strategy for testing each function thoroughly.
Coverage goals are set for each function. These goals list which metric is
important to obtain to verify that the function has been tested. The metric
could be as simple as a certain signal being asserted a number of times or as
complex as a series of protocol sequences.

Once the test plan is completed, a coverage model that details the func-
tional coverage goals, along with stimulus coverage goals and goals based on
the team’s experience, is developed. The coverage model identifies how each
of these goals is measured. The team uses the test plan and coverage model to
develop the testbench for stimulating and testing the design. The team might
track stimulus generation, increase interface monitors, or add internal moni-
tors to identify certain coverage goals. Some of the coverage goals are

168 Professional Verification

attained through using automated coverage tools, such as code coverage or
structural coverage tools.

The coverage instrumentation is included as the entire test suite is simu-
lated. The monitors collect information from every test and correlate them
into a single database for analysis. The entire test suite should be simulated
before analysis is started. Time can be wasted identifying holes in the verifi-
cation process that are already covered in tests that have not been run. It is
also important to only run tests that pass. Tests that report incorrect function-
ality should not be included in the design, since the information might lead to
incorrect analysis.

One of the most difficult decisions is deciding when to measure coverage.
If you start too early, you waste time chasing holes that will be covered in
future tests. If you start too late, the data is usually too late to do any good.
Ideally, you would run coverage once all the tests are complete, all the tests
are passing, and the design is free of bugs. In reality, this condition rarely
occurs. The verification team must pick a point in the process where they feel
the design and test environment are fairly stable. At this point, a snapshot
should be taken of the entire environment, and a separate coverage simulation
run should be done. Having a separate stable coverage run makes analysis
easier and limits the performance impact of coverage collection.

The final phase is to analyze the coverage information collected. The first
information to analyze is the specific coverage goals for each function listed
in the test plan. This identifies any tests that are working incorrectly or that
have been missed from the test plan. If any coverage goals are not met, the
team should create new tests and resimulate the design until all the goals are
met. The next step is the cross- correlation of the functional coverage goals.
The coverage goals met during the first step are crossed with each other and
with related functional verification information, such as stimulus coverage.
This step checks that not only were the intended functions verified but they
were verified in conjunction with other related activities within the design. If
holes are discovered in the cross-correlation, the team should create new tests
to cover these cases and resimulate the design until the goals are met.

The first two phases of the coverage analysis process verify that the func-
tionality that the team knows about has been tested properly. The last phase is
to identify coverage holes in areas that the team may not be aware of. This
phase uses automated coverage to identify missed areas or areas added during
the development process without updating the test plan. This information is
often inaccurate or incomplete, so the verification team should not begin this
analysis until they are sure that everything that they know needs to be verified
has been verified. If holes are identified in this stage, the verification team

Chapter 15: Advanced Testbenches 169

should create new tests to cover these areas and resimulate the design until the
goals are met.

The coverage process is an iterative process of identifying missed goals or
stimulus holes and addressing them in a prioritized fashion. Metrics can be
collected along the way to mark the progress and to give management an indi-
cation of confidence in the design. In most cases, the collection and analysis
of coverage information is not started until the test suite is near completion
and the design is stable. Measuring coverage too early in the process can
result in incomplete information leading to incorrect assumptions.

170 Professional Verification

Filling Coverage Holes

An often overlooked aspect of coverage is how you generate new stimulus
when you identify a coverage hole. In some cases, the reason a goal was
missed or an area was not covered is simply an oversight, such as forgetting to
set a mode bit. These cases can be covered by correcting the oversight. More
often, the reason is the difficulty in causing that goal or area to be stimulated.
The difficulty in generating stimulus could be caused by logic being buried
deep in the design, or that the logic requires a complex and rare sequence of
events to stimulate or many cycles of setup to occur to bring the design into a
state where the area can be stimulated. Each of these cases creates a challenge
for the verification engineer.

A verification engineer has several options to choose from when attempt-
ing to generate stimulus to cover a difficult coverage hole, such as writing a
directed test that targets the specific logic or functionality. However, writing a
directed test to cause specific internal interactions to occur can be difficult
and requires in-depth knowledge of the implementation. If the verification
environment includes random tests, the engineer could rerun these tests for
longer periods of time or with different seeds, hoping that eventually the test
covers the intended area. Depending on how large the design is and how con-
strained the random stimulus generation is, the chances of this working can be
quite low. Constraining the random stimulus generator to narrow the focus to
the area of the design that needs coverage could improve the odds that the
area gets covered, but might not help if the effects of variance in the stimulus
are limited to the interfaces of the design.

Another option is to use automation to create stimulus to target a coverage
hole. Some advanced verification teams use formal verification tools to gener-
ate test cases to stimulate the intended area. These teams place a property or
assertion within the design associated with the coverage target. Instead of
using the tool to prove that the case can never happen, they use it to generate
cases that can make it happen. These test cases are then used to derive a
directed test to cover the intended coverage goal. This technique requires
knowledge of using a formal verification tool and requires the setup associ-
ated with using a formal tool, such as constraining the design and defining
initial states.

Advanced verification teams have also used coverage-directed stimulus
generators, which read in coverage information and attempt to generate stimu-
lus to cover the areas not yet covered. These tools have been limited to narrow
coverage information, such as stimulus coverage. Currently, the goal of auto-
matically identifying and stimulating functions or structures within a design
has only been used in research projects.

Chapter 15: Advanced Testbenches 171

REACTIVE TESTBENCHES

One way to create stimulus to address coverage holes is to use run-time
coverage information. The coverage process detailed earlier relies solely on
using post-processed coverage information that is not analyzed until all the
simulations complete. Run-time coverage provides dynamic information that
can be used as the tests are running. It can be used for event notification and
information collection. You can use run-time coverage information with each
of the different stimulus generation techniques for addressing coverage holes.
Directed tests can utilize the notification of internal events to direct stimulus
to the targeted area. Random tests can use the collected information to change
constraints on-the-fly. Coverage-directed stimulus generators can use the
information to identify coverage holes and to direct stimulus to targeted areas.

172 Professional Verification

Run-time coverage information facilitates the development of reactive
testbenches. Reactive testbenches enable test writers and stimulus generators
to change the actions or characteristics of a test while it is running. Creating a
reactive testbench requires the ability to observe the behaviors of the design
and to react to those behaviors. Testbench environments have always had the
ability to probe into a design to monitor internal signals. This has mostly been
done to check the design’s response. The limitation of probing internal signals
is that the engineer must know of the signal’s existence and know how to
identify it. Changes in the design or in the hierarchy often lead to the signals
being removed or misidentified. Coverage goals and functions are not as eas-
ily correlated with internal signals as response checks are. Thus, it has been
more difficult to use simple signal probing to monitor designs for reactive
testbenches.

Advanced verification teams have used assertions to overcome this limita-
tion. Structural and functional assertions placed inside a design translate
internal signal information into functional events that can be monitored and
reacted to. Assertion tools handle the translation of signal names and hierar-
chies as the design and testbench mature. So, instead of the test writer having
to identify the read, write, and location counters of a FIFO to determine when
the FIFO is nearly full, a simple FIFO assertion identifies them. Using asser-
tions as coverage monitors is often overlooked. One approach to creating a
reactive testbench environment is developing and using a library of structural
assertions that act as checks and monitors. These assertions can be placed on
elements, such as FIFOs, FSMs, arbiters, and MUXes, to check for illegal
operations and to identify that the elements are operating functionally. These
assertions provide the test writer with an interface to the internals of the
design that is not directly tied to the implementation.

Once a reactive testbench has the ability to easily observe the design,
reacting to those observations can be developed. This reaction can be as sim-
ple as stopping the test. Often it is difficult for test writers to know when the
test has caused the intended behavior within a design, so they run the test for a
maximum number of cycles to be assured it has happened. This can be a waste
of simulation time. Instead, in a reactive testbench, the test can run until it has
been notified that the intended behavior has occurred and the effects have
been verified. The reactive testbench may also be able to track the propaga-
tion of stimulus through a test so that the test developer can be sure the effects
have propagated to a checker. Reactive testbenches can also detect when
intended behavior is not occurring so that the stimulus can be changed or the
test terminated.

Reactive testbench environments can also make the development of com-
plex directed tests much easier. Complex directed tests often require the test

Chapter 15: Advanced Testbenches 173

writer to set up complex interactions within a design, such as filling a FIFO on
the same cycle as a state machine changes state. Creating complex interac-
tions requires the test writer to understand the details of the implementation to
know what exact stimulus to provide to the design. A reactive testbench can
provide information to the test writer to make this process easier. A FIFO
monitor can indicate when the FIFO is nearly full, and a FSM monitor can
identify the current state of the FSM. Using this information, the test writer
can send data until the FIFO is nearly full, then wait until the FSM is in the
desired state before sending the next stimulus to fill the FIFO.

In addition to simply reacting to the behaviors of the design, you can use
reactive testbenches to monitor what the design has already done and attempt
to do something new. Automating the coverage process has long been a goal
of advanced verification teams. While it may be considered a science project
today, it is worth investigating the problem to better understand the capabili-
ties of coverage tools and reactive testbenches. Today, the coverage process
requires manual intervention for selecting goals, identifying holes, and creat-
ing stimulus. Selecting goals will probably always require some manual
intervention, but automation can help identify possible goals and provide sim-
ple coverage goals, such as code coverage or stimulus coverage.

A completely automated coverage process requires a reactive testbench to
perform the identification of coverage holes and the creation of targeted stim-
ulus while the test is running. Identifying functional coverage targets that
have not been stimulated is straightforward. The assumption is that every goal
specified by the user is of high value, so it must be covered. Identifying gen-
eral coverage goals is more complex. Today, an engineer reviews coverage
data provided by a code or functional verification tool to identify which are
real holes and which are not. General coverage information might identify
areas of the design that are uncovered that are not intended to be covered,
such as test logic. A verification engineer knows that the reason a certain area
of the design is not covered is because those tests have not been run yet. Auto-
mated tools cannot infer this information, so automatic identification might be
limited to user-specified targets.

The automatic creation of stimulus to target coverage holes in a design
will probably require the combination of several different verification tech-
nologies. Today, some stimulus generation tools can monitor the stimulus
they have already sent and adjust the generation to cover stimulus that has not
yet been sent. This approach to automated generation is the first step in a more
complex problem. As noted earlier in the chapter, stimulus coverage does not
provide enough detailed information about how the design was stimulated to
be very useful for most designs. Most coverage holes are not at the interfaces
of a design but are buried deep in the functionality. The process of targeting

174 Professional Verification

these internal functions is to step back from the functionality layer by layer to
determine which sequence of operations needs to occur for the target to be
stimulated. The ability to do this traversing of the design is limited to formal
verification and symbolic simulation techniques. So, the solution to this prob-
lem will probably be a combination of verification techniques from
simulation, constrained randomization, formal model checking, and symbolic
simulation.

Advanced verification teams have begun to use run-time coverage infor-
mation and reactive testbenches. One issue these teams have run into is the
difficulty in keeping the tools up-to-date with coverage information. Most
complex design projects have hundreds or even thousands of different tests to
run. If an environment or test is going to use coverage information from these
past tests, there is often a chicken-and-egg type problem. The user has to run
all the other tests to collect the data so that the next test can use it. If a test
fails or a change is made to the design or testbench, the tests have to be
repeated before the information can be used again. Most teams run their tests
simultaneously on server farms, which requires close coordination and syn-
chronization of different active processes. The lesson learned from these
advanced teams is to fully understand the intended use model before embark-
ing on using an advanced run-time coverage environment.

Chapter 16

Hardware-Based Verification
Advantages of hardware-software co-verification

As more and more electronic products have software content, designers
are faced with serious project delays if they wait for first silicon to begin soft-
ware debugging. It also means that a serious system problem might not be
found until after first silicon, requiring a costly respin and delaying the project
for two to three months. Increasingly, designers are turning to hardware-soft-
ware co-verification—concurrently verifying hardware and software
components of the system design—to meet demanding time-to-market
requirements. At a minimum, this means starting software debugging as soon
as the IC is taped out rather than waiting for good silicon. But even greater
concurrency is possible. In many cases, software debugging can begin as soon
as the hardware design achieves some level of correct functionality. Starting
software debugging early can save two to six months of product development
time. There are a variety of approaches to hardware-software co-verification.
This chapter addresses accelerated co-verification, since the complexity of
software in today’s electronic products precludes adequate testing with the
performance of a software simulator.1

ACCELERATED CO-VERIFICATION

There are additional benefits to starting software verification prior to
freezing the hardware design. If problems are found in the interface between
hardware and software components, designers can make intelligent trade-offs
in deciding whether to change the hardware or software, possibly avoiding
degradation in product functionality, reduced performance, or an increase in
product cost.

1. This chapter is based on Cadence Design Systems’ white paper “Accelerated
Hardware/Software Co-Verification” by Ray Turner, March 2004.

176 Professional Verification

Usually, a custom IC is to be used with a standard microprocessor, which
is running the software being developed. The IC, the software driving it, and
the board and system have to be verified. Typically, the IC is verified using
simulation, accelerated simulation, and, especially for larger ICs, in-circuit
emulation, using test vectors, testbench programs, and live in-circuit data. The
board and system, including software, are usually verified in a live use con-
text, frequently augmented with special test equipment. Less frequently,
microprocessor suppliers are developing a new processor or variant either as a
standalone device or as a core. In this case, the processor must also be verified
for software compatibility and system-level interface.

An important factor in selecting a co-verification approach is the type of
model available for the processor. It can be a physical component, such as a
standard microprocessor put on a board or a bond-out core for a processor
core included in an IC. It can also be an RTL model of the processor. In gen-
eral, in-circuit emulation provides the highest performance possible—several
orders of magnitude higher than any simulation approach. Emulation also
allows verification of the design in a real-world environment with live data.
Testing a design in the context of actual data, with thousands of times the vol-
ume of test data, provides exceptionally high confidence in design
correctness. If only an ISS model is available, acceleration is possible, but
overall performance is reduced by the speed of the ISS model, perhaps by as
much as one or two orders of magnitude.

We will now look at three approaches to accelerated hardware-software
co-verification. They all support designs with multiple processors. These

Chapter 16: Hardware-Based Verification 177

approaches are listed in order of increasing performance and use the
following:

An ISS with a software simulator and an accelerator or emulator

An RTL processor model and an accelerator or emulator

A physical model of the processor (bond-out core) and an emulator

Using an ISS, Software Simulator, and Accelerator/Emulator

In this approach, the logic simulator models the IC and other hardware
components, except for the processor and memory. Processor simulation is
done by an ISS, and memory is modeled by workstation memory. An indus-
try-standard programmable language interface (PLI) connects the simulator to
the ISS. In operation, the system software is executed by the ISS on the work-
station. The ISS typically can execute several thousand instructions per
second. When an I/O instruction or memory-mapped I/O access to the IC is
performed, the ISS passes the I/O to the simulator, which handles any non-
synthesizable code in the design and interfaces to the accelerator, which is
accelerating all the synthesizable code in the design. Any resulting changes in
IC outputs are passed back to the ISS. Overall performance depends greatly
on the amount of I/O being done by the software due to the overhead of com-
municating between the ISS and the accelerator. An important benefit of this
approach is that industry-standard software debugging tools are used, which
can be more productive for investigating software problems. An ISS model of
the processor is needed, but these are generally available and typically sup-
plied by the processor vendor as part of the software development toolset.

The steps in using co-verification with an ISS, software simulator, and
accelerator are:

Compile the software into a ROM code file.

Compile the hardware design for the accelerator and download.

Start the simulator and the ISS.

Debug with software and accelerator debug tools.

1.

2.

3.
4.

178 Professional Verification

Using an RTL Processor Model and Emulator

In this approach, an RTL model of the processor is substituted for the ISS
model. The RTL model is mapped into the emulator along with the IC design.
The entire system is modeled in the emulator and runs at full emulation
speed—usually ten to a hundred times faster than the ISS approach. You can
connect a software debug monitor to provide the familiar software debugging
environment. Thus, the software and hardware engineers each use the debug
environment they are most familiar with, thereby increasing debug
productivity.

Since this approach can be in-circuit and in-system, testing can take place
with live data in as real world an environment as possible. This approach is
the only way to gain the high confidence that comes with testing a design in a
real environment with real data. It is hard to overestimate the value of in-sys-
tem testing. Over and over again engineers talk about finding bugs in this way
that they could not possibly have foreseen or tested for in a simulation envi-
ronment. The only substantial difference between testing with emulation and
testing with first silicon is that in emulation the target environment must be
slowed down to emulation speeds and, therefore, provides lower performance
than actual silicon, but with the advantage of complete visibility into the
design and a comprehensive debugging environment that first silicon does not
offer.

Chapter 16: Hardware-Based Verification 179

The steps in using co-verification with an RTL model and incisive emula-
tor are:

Compile the software into a ROM code file.

Compile the hardware design for the emulator and download.

Plug the emulator and software debugger into the target system, if
used.

Debug with software and emulator debug tools.

1.

2.

3.

4.

Using a Physical Model of the Processor and an Emulator

In this approach, the RTL model is replaced by a physical model: a bond-
out core. Performance is similar to the RTL approach, but less capacity is
needed in the emulator. Aside from the obvious performance advantage, this
approach also allows microprocessor in-circuit emulators (MP-ICE) to be
used for software development and debugging. These provide for rapid down-
load of the code into the target system and sometimes provide additional
functionality, such as hardware breakpoint detection, watched variables, and/
or a logic analyzer. They might also provide more functionality than simpler
debug monitors, for example, disassembly of the executed code to assist
debugging and source code execution control, such as single-stepping and
breakpoints. Hardware and software debugging tools can be easily cross-cou-
pled for coordinated debugging, when needed.

The steps in using co-verification with a physical model, emulator, and
MP-ICE are:

Compile the software into a ROM code file.

Compile the hardware design for the emulator and download.

Plug the emulator and MP-ICE into the target system (or IP chassis).

Cross-connect the emulator and MP-ICE for coordinated debugging.

Download the ROM code file with the MP-ICE.

Debug with software and emulator debug tools.

1.

2.

3.

4.

5.

6.

180 Professional Verification

In some target-based approaches, a Real-Time Operating System (RTOS)
might be running in the processor or a debug monitor might be running
(sometimes called a Resident System Monitor (RSM)). These provide a com-
munications path (RS-232 or Ethernet) back to a workstation running the
software debugger. In both the MP-ICE and RTOS cases, the software and
hardware debugging environments can be synchronized so that hardware-
software interface issues can be debugged conveniently. The breakpoint or
trigger systems of the emulator and MP-ICE are cross-connected such that the
emulator’s logic analyzer trigger is one of the MP-ICE breakpoint conditions,
and the MP-ICE breakpoint trap signal is set as a emulator logic analyzer trig-
ger condition. If a software breakpoint is reached, the emulator captures the
condition of the IC at the same moment. If an IC event occurs that triggers the
logic analyzer, the software is stopped at that moment. This allows inspection
of the hardware events that led to a software breakpoint or of the IC operation
resulting from executing a set of software instructions. This kind of coordi-
nated debugging is extremely valuable for understanding subtle problems that
occur at the hardware-software interface.

Comparing Approaches

The table below summarizes the trade-offs of the three approaches
explained above.

Chapter 16: Hardware-Based Verification 181

There are several factors to take into account when determining which
approach is best for your project. One factor to consider is the performance
required to meet your objectives. Another is whether you are going to begin
software debug before or after tapeout. The amount of software that you want
to verify is another consideration. If you only want to verify very little soft-
ware before working silicon is available, use logic simulation and an ISS. For
a moderate amount of software, use an ISS and an Incisive simulator and
accelerator. If you want to verify a lot of software, use RTL or a physical pro-
cessor model and emulation.

INCORPORATING CO-VERIFICATION INTO YOUR
DESIGN ENVIRONMENT

One of the most significant factors in implementing hardware-software
co-verification is the corporate culture and organization regarding hardware
and software developers. The ideal is a project team in which hardware and
software engineers report to a single project lead or manager and work
together in a fully collaborative way to create an optimal hardware-software
system. An accelerator or emulator can be shared very effectively in a multi-
user environment. The capacity of a single emulator can be shared among
eight users for BIOS and driver software development. Alternately, the entire
system capacity can be used when verifying the complete design. With multi-
ple systems, you can support many simultaneous software developers with a
very high performance verification and debugging environment.

Looking at the cost of a verification solution versus the cost of making a
mistake can be instructive. The costs of making a mistake include the cost to
do a respin of the IC and the cost of being three months late to market (the

Table 4. Comparison of Approaches

Approach

ISS, Simulator,
and Accelerator

RTL model and
Emulator

Physical model
and emulator

Type of Model

ISS

RTL

Physical

Debug
Environment

ISS debugger and
logic simulator

SW debugger and
TurboDebug

MP-ICE, RTOS,
and TurboDebug

Performance

Medium-High

Very High

Very High

Level of Software
That Can Be
Verified

Drivers and Diag-
nostics; Small OS

UNIX, Windows,
RTOS, and appli-
cations

UNIX, Windows,
RTPS, and appli-
cations

182 Professional Verification

average time that can be saved if you start software debugging before tape-
out). For rapidly changing consumer markets, the lost opportunity cost can
easily be tens of millions of dollars. There are additional benefits from using
co-verification. For example, it is very helpful if the diagnostics are running
when the IC comes back from fabrication. They can be used to do focused
testing of specific parts of the design. Without working diagnostics, you end
up doing ad hoc testing of the whole IC at once—a hit-and-miss proposition.

With today’s complex ICs, acceleration and emulation are practical neces-
sities to verify designs and software in a complete system environment with
real data. Software content of electronic products is increasing exponentially
and is most often the pacing item for product completion. Using acceleration
or emulation for hardware-software co-verification takes advantage of the
investment made in the emulator and shortens product cycles by several
months. Emulation as a vehicle for hardware-software co-verification pro-
vides by far the highest performance available for this critical task, along with
real-world data for comprehensive system testing.

Appendix 1

Resources

Bergeron, Janick. Writing Testbenches—Functional Verification of HDL Models, 2nd ed. Bos-
ton: Kluwer Academic Publishers, 2003. ISBN: 1402074018

Foster, Harry, Adam Krolnik, and David Lacey. Assertion-Based Design, 2nd ed. Boston: Klu-
wer Academic Publishers, 2003. ISBN: 1402074980

Grotker, Thorsten, ed. Stan Liao, Grant Martin, Stuart Swan. System Design with SystemC.
Boston: Kluwer Academic Publishers, 2002. ISBN: 1402070721

Haque, Faisal, Khizar Khan, and Jonathan Michelson. The Art of Verification with Vera. Veri-
fication Central, 2001. ISBN: 0-9711994-0-X

Meyer, Andreas. Principles of Functional Verification. Newnes, 2003. ISBN: 0750676175

Muller, Wolfgang, Wolfgang Rosenstiel, and Jurgen Ruf, eds. SystemC: Methodologies and
Applications. Boston: Kluwer Academic Publishers, 2003. ISBN: 1402074794

Palnitkar, Samir. Design Verification with e, 2nd ed. Boston: Kluwer Academic Publishers,
2003. ISBN: 0131413090

Sutherland, Stuart. Verilogs 2001: A Guide to the New Features of the VERILOG Hardware
Description Language, 1st ed. Boston: Kluwer Academic Publishers, 2002. ISBN:
0792375688

This page intentionally left blank

Glossary

Acceleration-on-Demand The ability to move from a software simulation-
based test environment to a hardware-accelerated, simulation-based test
environment.

Algorithmic-based Digital Design A digital logic design that is directly
developed from a algorithm or protocol and does not contain control-
based operations.

Analog Behavioral Model A model of an analog circuit that represents the
behavior of the implementation, but does not include the implementation-
specific information.

Application Assertion An assertion used to specify an application-specific
architectural property, such as fairness of an arbiter.

Application Coverage A measurement of the percentage of application cov-
erage monitors that have measured an event.

Application Coverage Monitor A device to monitor the number of times an
application-specific event has occurred.

Architectural Checks Checkers that verify the correct functional and perfor-
mance operation of the FVP.

Assertion A codified representation of a designer’s or architect’s intent when
creating a design. Assertions specify a property or behavior in a struc-
tured manner that can be verified to be correct.

Bottom-Up Development An approach to development starting at low-level
implementation blocks and integrating the blocks together to form sys-
tem-level representation.

Control-based Digital Design A digital logic design that is developed from
a specification and not strictly based on a algorithm or protocol.

Design Hierarchy The naming of the design’s hierarchical levels in a sys-
tem. A system is made up of subsystems, which are made up of design
blocks, which are made up of design units.

186 Professional Verification

Device Under Verification (DUV) The block, system, or subsystem being
verified.

Emulation A system verification technique where an implementation of a
design is mapped into a hardware device that emulates the operation of
the design at faster speeds than simulation. The device provides standard
interfaces to connect the design to real-world interfaces.

Functional Virtual Prototype (FVP) A golden functional representation of
the complete DUV and its testbench.

Implementation-Level Model A functional model of the design in which the
structure and communications interfaces are defined to be implementa-
tion-specific. These models are often referred to as Register Transfer
Level (RTL) models.

Interface Assertion An assertion used to specify the protocol and handshak-
ing of an interface between two blocks.

Interface Coverage A measurement of the percentage of interface coverage
monitors that have measured an event.

Interface Coverage Monitor A device to monitor the number of times an
interface event has occurred.

Interface Monitors A testbench component that passively monitors an inter-
face looking for signaling and protocol errors.

Mixed-Signal Design Designs that combine analog and digital logic.
Response Checker A testbench component that compares the output of the

DUV to the expected response to verify correct operation.
Response Generator A testbench component that responds to requests made

by the DUV.
Single-Kernel Architecture The ability to natively support all design and

verification languages from the same simulation engine.
Stimulus Generator A testbench component that creates stimulus and

sequences its delivery to the DUV.
Structural Assertion Used to specify the operation of low-level implemen-

tation-specific structures in a design.
Structural Coverage A measurement of the percentage of structural cover-

age monitors that have measured an event.
Structural Coverage Monitor A device to monitor the number of times an

implementation structure event has occurred.
System-on-Chip (SoC) An integrated circuit with an on-board processor,

memory, and one or more standard interface blocks or application-spe-
cific blocks.

Top-Down Development An approach to development starting at a high-
level representation and partitioning down to lower level implementation
blocks.

Glossary 187

Transaction A unit of information abstracted from a lower signal-level rep-
resentation that is used to represent an information transfer separate from
the mechanism of transfer.

Transaction-Level Model (TLM) A functional model of the design in which
communications interface is in the form of transactions.

Transaction Taxonomy A classification of the types of transactions used
throughout a design.

Transactor A testbench component that converts different levels of interface
abstraction, such as signal-level interface to transaction-level interface.

This page intentionally left blank

Index

A
abstraction levels 98
acceleration 50, 82
Advanced Custom Design 95, 100
advanced functional verification

characteristics of 15
managing time and resources 23

advanced verification techniques 81, 92,
112, 113

algorithmic digital subsystems 66, 87
algorithmic models 66
algorithms

developing 88
analog 95
analog designs 65
analog models 65
analog subsystems 95
APIs 149
architectural assertions 164
architectural checkers 67
architectural checks 68
assertions 48, 77, 79, 81, 113, 134, 159,

172
reusing 166

automated tools 173
automation 28

B
behavioral models 64
block development 63
block-level verification 54
blocks

hardening 86
reusing 11

bottom-up verification 79, 84
bugs, causes of 7

C
Cadence Design Systems 41, 95
complex designs

verifying 15
constraints 155
continuous-time domain 65
control digital subsystems 71
coverage 49, 81, 113, 166
coverage holes 170

D
data checks 139
data path subsystems 87
dependencies 19, 24, 42
design changes 131
digital signal processors 87
directed tests 153, 170

E
efficiency 10, 12, 142
emulation 113
equivalency checking 135
error tests 154

F
feature tests 154

190 Professional Verification

flexibility 143, 166
formal verification 131
fragmentation 12, 58, 72
functional representations

reusing 17
functional verification 17
functional virtual prototypes 43
FVP 43, 53, 57, 58

costs and benefits 59
creating 53, 64
implementation level 107
integrating a subsystem 108
transaction level 107
using 61
verifying 67

H
hardware acceleration 50, 54
hardware prototypes 113
hardware-software co-verification 114, 175
HDL 13

I
in-circuit emulation 113
interface assertions 164
interface monitors 66, 148
interface tests 153

L
legacy IP 97
limited resources 10
linting 78, 132

M
mathematical techniques 132
methodology 21, 51

reusing 22
mixed-level approach 102
model checking tools 137
multiple designs 22

O
open standards 22

P
parallel processes 18

parallel verification process 15
partitioning 59, 102
performance tests 154
professional verification 17, 31
project management 19
proprietary solutions 22

R
random tests 153, 170

constraining 155
reactive testbenches 171
real-time software applications 63
regression testing 50
resource management 25
resources 10
response checkers 148
reuse 11, 33, 46, 59, 141, 145, 159, 166

of functional representations 17
reused blocks 11
RF designs 95
risk management 20
RTL 46, 176
RTL analysis tools 132

S
scenarios 20
semi-formal verification 138
service processor applications 62
simulation 141
simulation acceleration 109
software development 62
speed 9, 12
static verification 78, 79
stimulus generation 67
stimulus generators 147
strategy 74
stress tests 154
structural assertions 164
sub-blocks, verifying 44
subsystem development 63, 71
synthesis tools 136
system integration 107
system models 44, 58
system verification 111

software-based 112
system-level design 57

Index 191

T
testbenches 90, 112, 141

advanced 159
bottom-up development 145
components 147
developing 80
efficiency 142
flexibility 143
reactive 171
reuse 141
tests 152
top-down development 145

testing, completing 9
tests 152
time constraints 9
time management 23, 24
tools 21, 27, 76, 135, 137, 138
top-down verification 80, 83
transaction taxonomies 46
transaction-level models 63, 64
transaction-level verification 46
transactions 46
transactors 147

U
Unified Verification Methodology 41
unifying verification process 13
user interface applications 62
UVM 53

V
verification

completing 9
coordinating with other tasks 17
fragmentation in 12
multiple designs 22
parallelizing 18
reuse 11
separating from design 17
tests 152
unifying process 13

verification engineers 10
verification flows 12
verification planning 72
verification strategy 74
verification tools 21

	Professional Verification - A Guide to Advanced Functional Verification
	Contents
	Authors
	Acknowledgements
	SECTION 1 THE PROFESSION OF VERIFICATION
	Chapter 1 Introduction Thinking about how it might not work
	Chapter 2 Verification Challenges Missed bugs, lack of time, and limited resources
	Chapter 3 Advanced Funtional Verification Viewing verification differently
	Chapter 4 Successful Verification Managing time and resources using advanced functional verification
	Chapter 5 Professional Verification From second-class citizen to respected profession

	SECTION 2 THE UNIFIED VERIFICATION METHODOLOGY
	Chapter 6 The Unified Verification Methodology A new approach to verification
	Chapter 7 UVM System-Level Design Creating an FVP
	Chapter 8 Control Digital Subsystems Verifying large digital designs
	Chapter 9 Algorithmic Digital Subsystems Verifying algorithms
	Chapter 10 Analog/RF Subsystems Verifying analog subsystems
	Chapter 11 Integration and System Verification Verifying system operation

	SECTION 3 TOOLS OF THE TRADE
	Chapter 12 System-Level Design System modeling, software, and abstraction
	Chapter 13 Formal Verification Tools Understanding their strengths and limitations
	Chapter 14 Testbench Development Measuring the trade-offs
	Chapter 15 Advanced Testbenches Using assertions and coverage
	Chapter 16 Hardware-Based Verification Advantages of hardware-software co-verification

	Appendix 1 Resources
	Glossary
	Index

